Optical Absorption and Polarogram of Macrocyclic Nickel (II) Complexes in Polar Solvents

극성용매에서 거대고리 Ni (II) 착물의 광흡수와 폴라로그램

  • Park Yuj-Chul (Department of Chemistry, College of Natural Sciences, Kyung Pook National University) ;
  • Jong-Chul Byun (Department of Chemistry, College of Natural Sciences, Kyung Pook National University)
  • 박유철 (경북대학교 자연과학대학 화학과) ;
  • 변종철 (경북대학교 자연과학대학 화학과)
  • Published : 1987.04.20

Abstract

The equilibria of chemical reaction between $\alpha$-Ni(rac-[14]-decane)$^{2+}$ and polar solvents(L; ANT, MFA, DMSO, DMF, and DMA) have been investigated by the spectrophotometric method at $25^{\circ}C$. (The equilibrium constants($K_1$) of) the first step in ANT, MFA, DMSO, DMF, and DMA were 31.0, 27.5, 21.3 15.9, and 6.4, respectively. The smallness of equilibrium constants ($K_2$) of the second step compared with $K_1$, was observed. $\alpha$-Ni(rac-[14]-dacane)$^{2+}$ + L $\leftrightharpoons$ [$\alpha$-Ni(rac-[14]-decane){\cdot}L]$^{2+}$ : $K_1$.[$\alpha$-Ni(rac-[14]-decane){\cdot}L)$^{2+}$+ L $\leftrightharpoons$ [$\alpha$-Ni(rac-[14]-decane){\cdot}$L_2$)$^{2+}$ :$K_2$. The relationship between d-d absorption energy and half-wave potential of complex ions at ACT was considered. Macrocyclic ligands increasing d-d transition energy caused half-wave potentials of Ni(II)-macrocycle to be shifted more positively. The half-wave potentials for Ni(rac-1[14]7-diene)$^{2+}$, Ni(meso-1[14]7-diene)$^{2+}$, Ni(1[14]4-diene)$^{2+}$, $\alpha$-Ni(rac-[14]-decane)$^{2+}$, ${\beta}-Ni(rac-[14]-decane)$^{2+}$, and Ni(meso-[14]-decane)$^{2+}$ reductions were -1.419, -1.431, -1.450, -1.473, and -1.480 (V vs. SCE), respectively. The d-d transition energies ($\nu_{max},\;cm^{-1}$) of the Ni(meso-[14]-decane)$^{2+}$ isomer were discussed with the dielectric constant (${\varepsilon}/{\varepsilon}_0$) of the various solvents, $\nu_{max}(cm^{-1})$ increased with increasing ${\varepsilon}/{\varepsilon}_0$.

극성용매(L; ANT, MFA, DMSO, DMF, DMA)에서 $\alpha$-Ni(rac-[14]-decane)$^{2+}$의 화학평형 관계를 상온에서 분광광도법으로 연구하였다. ANT, MFA, DMSO, DMF, DMA일 때 평행상수 $K_1$은 각각 31.0, 27.5, 21.3 15.9, 6.4이었으며 $K_2$$K_1$보다 적은 값이었다. $\alpha$-Ni(rac-[14]-dacane)$^{2+}$ + L $\leftrightharpoons$ [$\alpha$-Ni(rac-[14]-decane){\cdot}L]$^{2+}$ : $K_1$[$\alpha$-Ni(rac-[14]-decane){\cdot}L)$^{2+}$ + L $\leftrightharpoons$ [$\alpha$-Ni(rac-[14]-decane){\cdot}$L_2$)$^{2+}$; $K_2$.ACT에서 Ni(II)-macrocycle 착이온의 d-d흡수에너지 ($cm^{-1}$와 환원 반파전위 ($E_{1/2}$, V vs. SCE)사이의 상관성을 조사하였다. d-d 전이에너지를 크게하는 거대고리 리간드일수록 착이온의 반파전위는 좀더 양의 값으로 이동하였다. Ni(rac-1[14]7-diene)$^{2+}$, Ni(meso-1[14]7-diene)$^{2+}$, Ni(1[14]4-diene)$^{2+}$, $\alpha$-Ni(rac-[14]-decane)$^{2+}$, $\beta$-Ni(rac-[14]-decane)$^{2+}$, Ni(meso-[14]-decane)$^{2+}$ 착이온의 환원반파전위는 각각 -1.419, -1.431, -1.450, -1.473, -1.480 (V vs. SCE)이었다. 몇 가지 용매에서 Ni(meso-[14]-decane)$^+$ 이성질체의 d-d전이에너지($\nu_{max},\;cm^{-1}$) 변화와 용매의 유전상수(${\varepsilon}/{\varepsilon}_0$) 관계를 고찰하였으며 ${\varepsilon}/{\varepsilon}_0$가 클수록 $\nu_{max}(cm^{-1})$는 증가하였다.

Keywords

References

  1. Inorg. Chem. v.11 S. C. Jackels;E. Farmerv;N. F. Rose
  2. lnorg. Chem. v.16 L. Fabbrizzi
  3. J. Am. Chem. Soc. v.99 Y. Hung;L. Y. Martin;S. C. Jackels
  4. J. Chem. Soc. Dalton L. Fabbrizzi;M. Micheloui
  5. Inorg. Chem. v.18 L. Sabatiui;L. Fabbrizzi
  6. J. Chem. Soc. Dalton M. Kodama;E. Kimura
  7. J. Chem. Soc. Dalton Trans. P. Zanello;R. Seeber;A. Cinquantini
  8. Inorg. Chem. v.22 M. Sugimoto;J. Fujita
  9. Bull, Chem. Soc. Japn. v.57 T. Ito;M. Kato;H. Ito
  10. Inorg. Chem. v.23 A. Bianchi;L. Bologni;P. Dapporto
  11. Inorg. Chem. v.13 F. P. Hinz;D. W. Mogerum
  12. lnorg. Chem. v.19 R. G. Swisher;J. P. Dayhuff;D. J. Stuehr
  13. lnorg. Chem. v.22 M. Sugimoto;M. Nonoyama;J. Fujita
  14. J. Am. Chem. Soc. v.96 F. Wagner;M. T. Mocella;E. K. Barefield
  15. Inorg. Chem. v.21 E. Zeigerson;J. Bernstein;L. J. Kirschenbaum
  16. Bull. Chem. Soc. Japn. v.55 K. Tsukahara;H. Oshita;Y. Yamamoto
  17. J. Chem. Soc. no.A N. F. Curtis;H. K. J. Powell
  18. Inorg. Chem. v.10 V. L. Goedken;D. H. Busch
  19. J. Chem. Soc. Dalton R. Clay;J. Murray-Rust
  20. J. Chem. Soc. N. F. Curtis
  21. J. Chem. Soc. N. F. Curtis
  22. lnorg. Chem. v.4 B. Bosnich;M. L. Jobe;G. A. Webb
  23. Chem. Commun. Bosnich, R. Mason;P. Pauling
  24. Advences in Chemistry Series no.62 D. H. Busch
  25. J. Chem. Soc. M. M. Blight;N. F. Curtis
  26. J. Amer. Chem. Soc. v.79 I. M. Kolthoff;J. F. Coetzee
  27. Electroanalytical Chemistry v.3 A. J. Bard
  28. Analyst v.19 A. Werner
  29. J. Chem. Soc. N. F. Curtis
  30. Proc. Chem. Soc. J. Chatt
  31. Austsalian J. Chem. v.18 Y. M. Curtis;N. F. Curtis
  32. Australian J. Chem. v.19 Y. M. Curtis;N. F. Curtis
  33. Inorg. Chem. v.6 N. Sadasivan;J. Kernohan;J. F. Endicott
  34. J. Chem. Soc. Dalton F. Ferranti
  35. Inorg. Chem. v.18 L. Fabbrizzi
  36. Inorg, Chem., Acta. v.24 A. Anichini;L. Fabbrizzi;R. M. Clay
  37. J. Chem. Soc. Dalton Trans. L. Sabatini
  38. Inorg. Chem. v.20 J. H. Coates;D. A. Hadi