물-메틸알코올, 물-아세톤, 물-이소프로필알코올, 물-에틸렌글리코올에서 클로로-코발트 (Ⅲ) 착이온의 가용매분해반응에 미치는 압력 및 촉매의 영향

The Effect of Pressure and Catalyst on the Rate of Solvolysis of Chloro-cobalt (Ⅲ) cation in Binary-Aqueous Mixtures (Water-methyl Alcohol, Water-Acetone, Water-Isopropyl Alcohol and Water-Ethylene Glycol)

  • 박유철 (경북대학교 자연과학대학 화학과) ;
  • 배준웅 (경북대학교 자연과학대학 화학과) ;
  • 김상웅 (경북대학교 자연과학대학 화학과)
  • Yu-Chul Park (Department of Chemistry, Kyungpook National University) ;
  • Zun-Ung Bae (Department of Chemistry, Kyungpook National University) ;
  • Sang-Woong Kim (Department of Chemistry, Kyungpook National University)
  • 발행 : 1987.02.20

초록

몇가지 이성분 혼합용매(물-메틸알코올, 물-아세톤, 물-이소프로필알코올, 물-에틸렌글리코올)에서 $cis-[Co(en)_2Cl_2]^+$착이온의 가용매분해반응속도를 분광광도법을 이용하여 압력(1~1500bar)에 따라 측정하였다. 속도상수에 대한 압력의 영향으로부터 구한 활성화체적은 메틸알코올, 아세톤, 이소프로필알코올, 에틸렌글리코올에서 각각 1.13∼4.44, 1.13~3.59, 0.82~3.44, 1.13~2.68cm3mole-1이었다. 또한 메틸알코올에서는 촉매제로 Fe(Ⅱ)이온을 사용하여 가용매분해반응속도를 측정하였고, 활성화체적은 -0.56∼1.59cm3mole$^{-1}$이었다. 가용매분해반응성은 자유에너지변화사이클과 활성화체적을 이용하여 고찰하였다.

The rates of solvolysis of $cis-[Co(en)_2Cl_2]^+$ complex have been investigated using spectrophotometric method at various pressures up to 1500 bar in several binary-aqueous mixtures(water-methyl alcohol, water-acetone, water-isopropyl alcohol and water-ethylene glycol). The activation volumes obtained from the pressure effect on rate constants were 1.13∼4.44 cm3mole-1 for methyl alcohol, 1.13∼3.59$cm^3mole^{-1}$ for acetone, 0.82∼3.44$cm^3mole^{-1}$ for isopropyl alcohol and 1.13∼2.68cm3mole-1 for ethylene glycol. In case of water-methyl alcohol, in addition to, the rates of solvolysis of this complex were determined in the presence of Fe(Ⅱ) ion and the activation volumes were -0.56∼1.59cm3mole$^{-1}$. The rates of solvolysis of this complex were analyzed by comparing with the results obtained from activation volumes and free energy cycle.

키워드

참고문헌

  1. Can. J. Chem. v.50 W.E. Jones;T.W. Swaddle
  2. Pure Appl. Chem. v.38 D.R. Stranks
  3. High Temp-High pressures v.7 H. Lentz;S.O. Oh
  4. Inorg. Chim. Acta v.19 D.A. Palmer;H. KeIm
  5. Inorg. Chim. Acta v.24 M.V. Twingy
  6. Inorg. Chem. v.16 D.A. Palmer;H. KeIm
  7. Inorg. Chem. v.21 G.A. Lawrance
  8. Inorg. Chem. v.23 G.A. Lawrance;K. Schneider;R.V. Eldick
  9. J. Chem. Soc. Dalton Anadi C. Dash;Bhaska Dash;Prasama Kumar Mahapatra
  10. Inorg. Chem. v.16 Bernard S. Dawson;Donald A. House
  11. J. Chem. Soc. Dalton John Burgess;S. James Cartwright
  12. J. Chem. Soc. Dalton Anadi C. Dash;Raleindra K. Nanda
  13. J. Amer. Chem. Soc. John N. Armor;Albert Haim
  14. Transition Met. Chem. v.2 Anadi C. Dash;Rabindra K. Nanda
  15. J. Inorg. Nucl. Chem. v.38 S.F. Chan;S.L. Tan
  16. J. Inorg. Nucl. Chem. v.40 G.C. Lalor;H. Miller
  17. J. Inorg. Nucl. Chem. v.40 A.C. Dash
  18. J. Chem. Soc. Michael J. Blandamer;John Burgess;R.I. Haines
  19. Inorg. Chem. v.3 C.H. Langford
  20. J. Chem. Soc. Dalton M. Pribanic;M. Birus;D. Pavlovic;Asperger
  21. J. Chem. Soc. Faraday, I v.73 C.F. Wells
  22. J. Chem. Soc. Dalton C.N. Elgy;C.F. Wells
  23. J. Chem. Soc. Faraday, I v.77 A.E. Eid;C.F. Wells
  24. J. Chem. Soc. Faraday, I G.S. Groves;C.F. Wells
  25. J. Chem. Soc. Faraday, J v.79 A.E. Eid;C.F. Wells
  26. J. Chem. Soc. Faraday Trans v.1 C.F. Wells
  27. J. Chem. Soc. Faraday Trans C.F. Wells
  28. J. Chem. Soc. Faraday Trans C.F. Wells
  29. J. Chem. Soc. Faraday Trans C.F. Wells
  30. J. Chem. Soc. Faraday Trans C.F. Wells
  31. J. Chem. Soc. Faraday Trans C.F. Wells
  32. J. Chem. Soc. Dalton I.M. Sidahmed;C.F. Wells
  33. J. Inorg. Syn. v.2 J.C. Cailar
  34. Inorg. Chem. Claudio Bifano;R.G. Linck
  35. Textbook of Quantitative Analysis I.M. Kolthoff;E.B. Snndell
  36. J. Am. Chem. Soc. v.75 R.G. Pearson;C.R. Boston;F. Basolo
  37. Bull. Chem. Soc. Jpn. v.46 K. Tawura;Y. Oga;T. Imoto
  38. Annal Ree, Phy. Chem. v.23 C.A. Echert
  39. J. Org. Chem. v.43 H. Kwart;T.H. Lilly
  40. Inorg. Chim. Acta v.45 G.A. Lawrance
  41. Aust. J. Chem. v.33 G.A. Lawrance;S. Suvachittanont