Characteristics of Transparent and Conducting Tin Oxide Film

투명전도성 Tin Oxide Film의 특성

  • Chang Sup Ji (Department of Materials Science, Korea University) ;
  • Tak Jin Moon (Department of Materials Science, Korea University) ;
  • In Hoon Choi (Department of Materials Science, Korea University) ;
  • Dok Yol Lee (Department of Materials Science, Korea University)
  • 지창섭 (고려대학교 재료공학과) ;
  • 문탁진 (고려대학교 재료공학과) ;
  • 최인훈 (고려대학교 재료공학과) ;
  • 이덕열 (고려대학교 공과대학 재료공학부)
  • Published : 1987.02.20

Abstract

Some characteristics of $SnO_2$ film which was deposited on a slide glass substrate, using dibutyl tin diacetate and oxygen, by the chemical vapor deposition were observed. The optimum condition for the preparation of the film was found to be at 420$^{\circ}C$ of substrate temperature for 20 min of deposition. Important optical, electrical, and structural features of the film were examined. It was found that the typical $SnO_2$ film on the untreated substrate was 4000${\AA}$ in thickness, transmitted 90% of the visible liglit, and provided 5800 ohms/${\square}$ of the sheet resistance. It was also found that the surface treatments of the slide glass by acid leaching were beneficial. The film structure was found to be a mixture of polycrystalline tetragonal stannic oxide confirmed by the X-ray diffraction and to be spherical fine grains concluded by the scanning electron microscopy.

화학증착방법에 의해 dibutyl tin diacetate를 산소와 반응시켜 $SnO_2$박막을 slide glass에 증착시켜 각 조건에 형성된 $SnO_2$박막의 특성을 조사하였다. 본 연구에서 최적증착조건은 기판온도 420$^{\circ}C$, 증착시간 20분으로 나타났으며 증착속도는 증착시간이 증가함에 따라 증가하며 증착시간 25분이후에는 일정해졌으며 판저항의 값도 증착초기에는 감소하나 증착시간 20분이 지나면서 증가하였다. 증착온도 420$^{\circ}C$, 증착시간 20분에 형성된 박막은 두께 4000${\AA}$이며 가시광선 투과율이 90%이며 5800 ohms/${\square}$의 판저항을 가졌다. 그리고 산세척방법에 의해 표면처리한 기판과 반응기체중 수증기의 첨가는 더 좋은 특성의 투명전도성 $SnO_2$박막을 제조하는데 도움이됨을 알았다. 또한 증착막은 작은 구형의 입자들로 이루어져 있다는 것을 주사전자현미경으로 확인하였으며 X-선 회절 실험에 의해 rutile structure(tetragonal)를 갖는다는 것을 알 수 있었다.

Keywords

References

  1. Applied Optics v.9 L.H. Lin;H.L. Beauchamp
  2. Philips Technical Rev. v.26 R. Groth;E. Kauer
  3. Ind. Eng. Chem. Prob. Res. Dev. v.12 Carl M. Lampert
  4. J. Applied Physics v.33 R.L. Weiher
  5. Phys. State. Sol. v.27 H.K. Muller
  6. J. Electrochem. Soc. v.119 R.R. Mehta;S.F. Vogel
  7. J. Electrochem. Soc. v.119 D.B. Fraser;H.D. Cook
  8. J. Electrochem. Soc. v.122 J.C.C. Fem;F.J. Bachner
  9. Appl. Phys. Lett. v.44 no.8 I. Hamberg;C.G. Granqrist
  10. J. Electrochem. Soc. v.122 D.E. Carlson
  11. J. Electrochem. Soc. v.123 B.J. Baliga;S.K. Ghandi
  12. J. Electrochem. Soc. v.122 J. Kane;H.P. Schweizer;W. Kern
  13. J. Electrochem. Soc. v.123 J. Kane;H.P. Schweizer;W. Kern
  14. J. Appl. Phys. v.51 E. Shanthi;V. Dutta;A. Banerjee;K.L. Chopra
  15. J. Appl. Phys. v.53 E. Shanthi;V. Dutta;A. Banerjee;K.L. Chopra
  16. Phys. Rev. v.136 P.B. Johnson;R.W. Christy
  17. Physics of Semiconductor Devices S.M. Sze
  18. J. Electrochem. Soc. v.122 no.8 J. Kane(et al.)