Studies on the Reaction of 2-Phenylethyl Arenesulfonates with Pyridine under High Pressure

2-Phenylethyl Arenesulfonates와 피리딘과의 고압반응에 관한 연구

  • Yoh Soo Dong (Department of Chemistry, Teachers College, Kyungpook National University) ;
  • Park, Jong Hwan (Department of Chemistry, Teachers College, Kyungpook National University)
  • 여수동 (경북대학교 사범대학 화학교육과) ;
  • 박종환 (경북대학교 사범대학 화학교육과)
  • Published : 1986.08.20

Abstract

Kinetics of the reaction of 2-phenylethylarenesulfonates with pyridine in acetonitrile were investigated by an electric conductivity method under 1 to 2,000 bars and at 40∼60${\circ}C$. The rates of these reactions were increased with raising temperatures and pressures, but less than those of the reactions of benzyl benzenesulfonate with pyridine in acetoneitrile were investigated by an electric conductivity method under 1 to 2,000 bars and at 40~60${\circ}C$ .The rates of these reactions were increased with raising temperatures and pressures, but less than those of the reaction of benzyl benzenesulfonate with pyridine in acetone. The activation volumes and activation entropies of 2-phenylethyl m-nosylate were more negatively large than those of benzyl benzenesulfonate. From these phenomena it can be deduced that 2-phenylethyl system has more firmly $S_N2$ character in tranistion state. The Hammett reaction constants are also estimated from the second-order reaction constants. With increasing pressures the reaction parameters $({\rho})$ were decreased, but the $S_N2$ characters were increased. From these results, the reaction mechanism can be adequately described as typical $S_N2$ process under high pressure.

2-phenylethylarenesulfonates와 피리딘과의 아세토니트릴 용매중에서의 반응속도를 40∼60${\circ}C$, 1 ~ 2,000 bar에서 전기 전도도법으로 측정하였다. 반응속도는 온도가 높아지고 압력이 커짐에 따라 증가하였으며 아세톤 용매내에서 benzyl benzenesulfonate와 파라딘과의 반응속도보다 느렸다. 2-phenylethyl m-nosylate의 활성화 부피${\Delta}V^{\neq}$와 활성화 엔트로피 TEX>${\Delta}S^{\neq}$는 benzenesuflonate보다 음의 값으로 컸다. 따라서 본 반응의 2-phenylethyl계가 전이 상태에서 벤질계보다 $S_N2$성이 크다고 추정된다. Hammett도시한 결과는 압력의 증가에 따라 값이 감소하여 $S_N2$성이 증가하였다. 이들의 모든 결과로 부터 고압하에서의 본 반응은 $S_N2$메카니즘으로 진행되며 압력의 증가는 $S_N2$반응성을 더욱 조장하였다.

Keywords

References

  1. Dokl. Akad. N. Nauk. USSR v.122 M.G. Gonikberg;Kitaigorodsky
  2. High pressure physics and Chemistry v.2 S.D. Hamann;R.S. Bradley(ed.)
  3. J. Chem. Educ. v.44 W.J. LeNoble
  4. Bull. Chem. Soc. Japan v.46 K. Tamura;Y. Ogo;T. Imoto
  5. J. Amer. Chem. Soc. v.97 Y. Okamoto;K.I. Lee
  6. Z. Physik. Chem. v.5;6 N. Menschutkin
  7. Nippon Kakakukaishi v.6 M. Tsuruta;K. Murai
  8. Ph.D. Thesis, Osaka University S.D. Yoh
  9. presented at 25th symposium on Reaction Mechanism. Chem. Soc. Japan. at Tokyo. Abst. Papers T. Tsuno;M. Fujio;S.D. Yoh;M. Sawada;Yukawa
  10. J. Korean Chem. Soc. v.24 J.U. Hwang;S.D. Yoh;J.G. Jee
  11. J. Chem. Soc. H.H. Hodgson;J.S.Whitehurst
  12. J. Am. Chem. Soc. v.70 M.S. Morgan;L.H. Cretcher
  13. Memoirs of the Faculty of Science Kyushu Univ. v.13 no.1 M. Fujio;K. Ikeda;Y. Tsuno
  14. Chem. Ber. v.90 H. Meerwein;G. Dittmar;R. Gollner;K. Hafner;F. Mensch;O. Steifort
  15. The Systematic Identification Organic Compounds R.D. Shriner;R.C. Fuson;D.Y. Curtin
  16. J. Org. Chem. v.9 R.S. Tipson
  17. J. Chem. Soc. (B) O. Rogne
  18. J. Am. Chem. Soc. v.91 M.G. Jones Coke
  19. Monatsch Chem. v.54 D. Klamann
  20. J. Am. Chem. Soc. v.91 J.L. Coke; F.E. McFarlane;M.C. Mouring
  21. Phil. Mag. v.2 E.A. Guggenheim
  22. Solvolysis Mechanism E.R. Thornton
  23. Pro. Poy. Soc. v.A15 R.O. Gibson;E.W. Fawcettand;M.W. Perren
  24. J. Chem. Soc. D.A. Brown;R.F. Hudson
  25. J. Korean Chem. Soc. v.23 K.A. Lee;K.T. Howang;S.D. Yoh
  26. J. Chem. Sco. A. Fischer;B.R. Mann;J. Vaughan
  27. Mem. Fac. Sci. Kyushu Univ. v.13 no.1 S. Minami;S.D. Yoh;Y. Tsuno