可逆的 리간드 結合에 의하여 誘發되는 DNA의 응축-풀림 構造變移 : Spermine-DNA 複合體의 異例的 吸光度-溫度 樣相에 미치는 Urea의 影響

Condensation-Decondensation Structural Transition of DNA Induced by Reversible Ligand Binding : Effect of Urea on Anomalous Absorbance-Temperature Profile of Spermine-DNA Complex

  • 고동성 (忠南大學校 理科大學 化學科) ;
  • 이찬용 (忠南大學校 理科大學 化學科)
  • Thong-Sung Ko (Department of Chemistry, Chungnam National University) ;
  • Chan Yong Lee (Department of Chemistry, Chungnam National University)
  • 발행 : 1985.10.20

초록

Spermine에 의하여 誘發되는 凝縮 DNA 構造의 安定化에 있어서 hydrophobic interaction의 重要性을 試驗하기 위하여 spermine-DNA 複合體의 異例的 吸光度-溫度 樣相에 미치는 urea의 效果를 調査하였다. 그 結果 異例的 吸光度-溫度 樣相의 downward peak(trough) 領域에 이르는 相變移에 對한 cooperativity, enthalpy, midpoint의 값들이 Tm 領域의 값들 보다 urea에 敏感한 影響을 받았으며, urea의 濃度 增加에 따라 downward peak가 점차 사라졌다. 이 data는 異例的 吸光度-溫度 樣相을 構成하는 downward peak가 spermine에 의하여 誘發되는 hydrophobic interaction에 의한 凝縮된 tertiary structure의 形成을 나타내고 있다고 불 수 있다.

To investigate the importance of the hydrophobic interaction in the spermine-induced collapse of DNA to a compact structure, the effect of urea on the anomalous absorbance-temperature profile of calf thymus DNA has been investigated. With the increase of the urea concentration, the trough phase of the anomalous absorbance-temperature profile was eliminated eventually. The cooperativity, enthalpy, and the midpoint of the transition to the trough region are more sensitive to urea than those of the Tm-region transition. The present data of the adverse effect of urea, a hydrophobic environmental reagent, on the thermal stabilization of the condensed state of DNA, suggest that hydrophobic interaction may play an important role in the stabilization of the tertiary structure of the collapsed state of DNA.

키워드

참고문헌

  1. Physical Chemistry of Nucleic Acids V.A. Bloomfield;D.M. Crothers;I. Tinoco, Jr.
  2. Biochim. Biophys. Acta v.14 R. Thomas
  3. Ann. Rev. Biochem. v.36 G. Felsenfeld;H.T. Miles
  4. Biochemistry v.2 L. Levine;J.A. Gordon;W.P. Jenck
  5. Introduction to the Polymines S.S. Cohen
  6. Ann. Rev. Biochem. v.45 E.W. Tabor;H. Tabor
  7. J. Bacteriol. v.94 A. Raina;M. Jansen;S.S. Cohen
  8. Acc. Chem. Res. v.15 B. Ganem
  9. J. Mol. Biol. v.42 M. Suwalsky;W. Traub;V. Shmueli;J. Subirana
  10. J. Korean Chem. Soc. v.27 T.-S. Ko;J. Huh;C.B. Lee;M.K. Park
  11. J. Korean Chem. Soc. v.28 T.-S. Ko;J. Huh
  12. J. Korean Chem. Soc. v.29 C.Y. Lee;T.S.-Ko
  13. Biochemistry v.14 B. Wolf;S. Hanlon
  14. Biopolymers v.3 J.E. Hearst
  15. J. Am. Chem. Soc. v.84 M. Falk;K.A. Hartman, Jr.;R.C. Lord
  16. Can. J. Chem. v.48 M. Falk;A.G. Poole;C.G. Goymour
  17. Proc. Nat. Acad. Sci. USA v.76 S.B. Zimmerman;B.H. Pheiffer
  18. Prog. Biophys. Mol. Biol. v.33 J. Texter
  19. Q. Rev. Biophys. v.11 G.S. Manning
  20. Biochemistry v.18 R.W. Wilson;V.A. Bloomfield
  21. J. Mol. Biol. v.144 J. Wodom;R.L. Baldwin
  22. J. Phys. Chem. v.82 G.S. Manning
  23. J. Phys. Chem. v.87 W.S. Yen;K.W. Rhee;B.R. Ware
  24. Biochim. Biophys. Acta v.741 K.A. Marx;T.C. Reynolds
  25. Biopolymers v.22 T.J. Thomas;V.A. Bloomfield
  26. Biophysical Chemistry C.R. Cantor;P.R. Schimmel