DOI QR코드

DOI QR Code

$\pi$-Nonbonded Interactions Involving Heteroatoms$^*$

  • Published : 1983.08.20

Abstract

Ab initio calculations were performed on systems containing various basic ${\pi}$ fragments and glycines to generalize the ${\pi}$-nonbonded interaction (${\pi}$-NBI) method of determining relative conformational and configurational stability of organic molecules. It was found that the relative stability of conformational isomers can be determined in general by the simple application of the ${\pi}$-NBI method, but the method is not applicable to the geometrical isomerism in which stronger structural factors are involved. The ${\pi}$-NBI effect of a crowded ${\pi}$-structure ($n{\pi}/m$) is maximum for the system in which n is equal to m. In crowded structures containing heteroatoms, ${P^{\pi}}_{ij}$ values of 4N+1 system may become negative, but this sign reversal does not invalidate the predictions based on the ${\pi}$-NBI method.

Keywords

References

  1. Quantum mechanics of Molecular Conformations B. Pullman(ed.)
  2. Topics in Current Chemistry Structural Theory of Organic Chemistry N. D. Epiotis;W. R. Cherry;S. Shaik;R. Yates;F. Bernardi
  3. J. Mol. Struct. (THEOCHEM) v.86 C. V. Alsenoy;J. N. Scarsdale;J. O. Williams;L. Schafer
  4. Bull. Korean Chem. Soc. v.1 I. Lee
  5. Bull. Korean Chem. Soc. v.1 I. Lee;K. B. Rhyu
  6. J. Korean Chem. Soc. v.24 I. Lee;B-S Lee
  7. Bull. Korean Chem. Soc. v.3 I. Lee;Y. G. Cheun
  8. J. Korean Chem. Soc. v.26 I. Lee;C. K. Sohn;C. H. Song
  9. J. Comput. Chem. I. Lee;Y. G. Cheun;K. Yang
  10. J. Amer. Chem. Soc. v.95 N. D. Epiotis
  11. J. Amer. Chem. Soc. v.95 N. D. Epiotis;D. Bjorkquist;L. Bjorkquist;S. Sarkanen
  12. J. Amer. Chem. Soc. v.98 F. Bernardi;N. D. Epiotis;R. L. Yates;H. B. Schlegel
  13. J. Amer. Chem. Soc. v.91 L. Salem;J. S. Wright
  14. Pure and Applied Chem. v.24 R. Hoffmann
  15. Interatomic Distances L. Sutton(ed.)
  16. Interatomic Distances Supplement L. Sutton(ed.)
  17. Chem. Soc. L. Sutton(ed.)
  18. J. Amer. Chem. Soc. v.102 L. Schafer;H. L. Sellers;F. J. Lovas;R. D. Suenram
  19. J. Comput. Chem. v.2 L. Schafer;C. V. Alsenoy;J. N. Scarsdale;V. J. Klimkowski;J. D. Ewbank
  20. The Organic Chemist's Book of Orbitals W. J. Jorgensen;L. Salem
  21. J. Mol. Spectrosc. v.38 Y. Sasada;M. Takano;T. Satoch
  22. J. Mol. Spectrosc. v.47 R. E. Penn;J. E. Boggs
  23. J. Phys. Chem. v.78 A. S. Manocha;E. C. Tuazon;W. G. Fateley
  24. J. Chem. Phys. v.69 J. R. During;D. A. C. Compton
  25. J. Amer. Chem. Soc. v.103 S. W. Staley;J. C. Giordan;J. H. Moore
  26. J.C.S. Perkin II v.467 F. Bernardi;A. Bottoni;Tonadin
  27. J. Chem. Soc., Chem. Commun. R. D. Brown;P. D. Godfrey;J. W. V. Storey;M. P. Bassoz
  28. J. Mol. Spectrosc. v.72 R. D. Suenram;F. J. Lovas
  29. J. Amer. Chem. Soc. v.102 R. D. Suenram;F. J. Lovas
  30. J. Amer. Chem. Soc. v.99 S. Vishveshwara;J. A. Pople
  31. J. Amer. Chem. Soc. v.100 H. L. Sellers;L. Schafer
  32. J. Amer. Chem. Soc. v.104 V. J. Klimkowski;J. D. Ewbank;C. V. Alsenoy;J. N. Scaradale;L. Schafer
  33. J. Org. Chem. v.47 M-H. Whangbo;K. R. Stewart

Cited by

  1. Theoretical studies on the acylation reactions of ammonia by ketenes: Determination of reactivity by molecular orbital theory (part 54) vol.1, pp.2, 1983, https://doi.org/10.1002/poc.610010204
  2. Theoretical studies on the gas-phase rearrangement of deprotonated allyl phenyl ether vol.5, pp.12, 1983, https://doi.org/10.1002/poc.610051206