DOI QR코드

DOI QR Code

The Swelling and Mechanical Properties of Hydrogels of Tactic Poly (2-Hydroxyethyl Methacrylate)

  • Lee, Joong-Whan (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Kim, Eul-Hwan (Seoul Health Junior College) ;
  • Jhon, Mu-Shik (Department of Chemistry, Korea Advanced Institute of Science and Technology)
  • Published : 1983.08.20

Abstract

The swelling and stress-elongation experiments have been performed for two kinds of gels of tactic poly (2-hydroxyethyl methacrylate) (P-HEMA) with varying crosslinker concentrations. The gels of isotactic and syndiotactic P-HEMA were swollen in aqueous salt solutions upon varying molal concentrations. The solute used were NaCl, $MgCl_2$, $Na_2SO_4$, $MgSO_4$ and urea. The water content at equilibrium swelling and the salt partition coefficient were determined, and stress-elongation curves of the gels were obtained. From these results, the effective number of chain (${\nu}_e$) and the Flory-Huggins interaction parameter (${\chi}_1$) were also obtained. The swelling experiment was also performed under varying solvents, and the degree of swelling was determined. The solubility parameter of P-HEMA was obtained as 13.4 (cal/mole)$^{l/2}$ using the correlation between the degree of swelling and the solubility parameter (${\delta}_1$) of solvents. The mechanical properties of syndiotactic P-HEMA is stronger than that of isotactic P-HEMA, and the water content of both gels become smaller when the crosslinking increases. Isotactic P-HEMA contains more water content than syndiotactic P-HEMA does.

Keywords

References

  1. ACS Symposium Series v.31 Hydrogels for Medical and Related Applications B.D. Ratner;A.S. Hoffman;J.D. Andrade(ed.)
  2. Medical Instrumentation v.7 J.D. Andrade
  3. J. Appl. Polym. Sci. v.22 A. Penati;M. Pegoraro
  4. J. Polym. Sci. v.59 J.J. Hermans
  5. Principles of Polymer Chemistry P.J. Flory
  6. J. polym. Sci. Polym. Phy. Ed. v.17 A.T. Britton, Jr.;J.L. Sullivan;K.J. Smith, Jr.
  7. J. polym. Sci. Polym. Phy. Ed. v.18 A.T. Britton, Jr.;J.L. Sullivan;K.J. Smith, Jr.
  8. Biomed. Mater. Res. Symposium v.1 M.F. Refojo
  9. Collection Czechoslov. Chem. Commun. v.42 K. Dusek;M. Bohdanecky;V. Vosicky
  10. J. Polym. Sci., A-1 v.5 M.F. Refojo
  11. Nature v.185 O. Wichterle;D. Lim
  12. ACS Symposium Series v.31 Hydrogels for Medical and Related Applications D.E. Gregonis;C.M. Chen;J.D. Andrade;J.D. Andrade(ed.)
  13. J. Appl. Polum. Sci. v.13 A.S. Hoffman;M. Modell;P. Pan
  14. J. Appl. Polym. Sci. v.14 T.A. Jadwin;A.S. Hoffman;W.R. Vieth
  15. J. Colloid and Interface Science v.51 H.B. Lee;M.S. Jhon;J.D. Andrade
  16. Bull. Korean Chem. Soc. v.2 E.H. Kim;S.I. Jeon;S.C. Yoon;M.S. Jhon
  17. J. Chem. Phys. v.11 P.J. Flory;J. Rehner, Jr.
  18. J. Chem. Phys. v.18 P.J. Flory
  19. J. Appl. Phys. v.11 M. Mooney
  20. Phil. Tans. Roy. Soc. (Lond) v.A240 R.S. Rivlin
  21. Phil. Tans. Roy. Soc. (Lond) v.A242 R.S. Rivlin
  22. Amer. Chem. Soc., Div. Org. Coat. Plast Chem. v.35 no.1 R.F. Eaton(et al.)
  23. Water v.3 F. Franks
  24. J. Appl. Poly. Sci. v.27 S.C. Yoon;M.S. Jhon
  25. ACS Adv. Chem. Series v.128 Polymerization Kinetics and Technology G. Borkent;J.J. van Aartsen;N.A.J. Platzer(ed.)
  26. J. Membrane Sci. v.6 S. Wisniewski;S.W. Kim
  27. J. polym. Sci. Polym. Phy. Ed. v.18 G.A. Russell;P.A. Hiltner;D.E. Gregonis;A.C. devisser;J.D. Andrade
  28. J. polym. Sci. Polym. Phy. Ed. v.16 L.Y. Yen;B.E. Eichinger
  29. Electrolyte Solutions R.A. Robinson;R.H. Stokes
  30. Polymer handbook J. Brandrup;E.H. Immergut
  31. Properties of Polymers D.W. Vankrevelen
  32. Polymer v.19 D.E. Greqonis;G.A. Russell;J. D. Andrade;A.C. de Visser

Cited by

  1. Interpenetrating Amphiphilic Polymer Networks of Poly(2-hydroxyethyl methacrylate) and Poly(ethylene oxide) vol.16, pp.26, 1983, https://doi.org/10.1021/cm040349b
  2. A Dual Functional Layer for Block Copolymer Self-Assembly and the Growth of Nanopatterned Polymer Brushes vol.29, pp.41, 1983, https://doi.org/10.1021/la403474k