DOI QR코드

DOI QR Code

Tunnel Effects in the H + D$_2$ and D + H$_2$ Reactions

  • Jong-Baik Ree (Department of Chemistry, Korea Advanced Institute of Science And Technology) ;
  • Young-Seek Lee (Department of Chemistry, Korea Advanced Institute of Science And Technology) ;
  • In-Joon Oh (Department of Chemistry, Korea Advanced Institute of Science And Technology) ;
  • Tai-kyue Ree (Department of Chemistry, Korea Advanced Institute of Science And Technology)
  • Published : 1983.02.20

Abstract

We considered the tunneling effect on the rate constants calculated from transition-state theory for the H + $D_2$ and D + $H_2$ reactions. A method for evaluating the important parameter Ec (potential barrier height) was proposed. A tunnel-effect correlation factor (TECF) ${\Gamma}_{t}exp{\theta}_t$ was estimated from experimental data, and compared with the corresponding values obtained from many theoretical methods. According to our results, the tunneling effect cannot be negligible around $800^{\circ}$K where the TECF value is ca. 0.8 whereas the factor approaches to unity at T > $2400^{\circ}$K where the tunneling completely disappears. In addition to the above fact, we also found that the TECF for the D + $H_2$ reaction is greater than that of the H + $D_2$ reaction in agreement with Garrett and Truhlar's result. In contrast to our result, however, Shavitt found that the order is reversed, i.e., TECF for (D + $H_2$) is greater than that for (H + $D_2$). We discussed about the Shavitt's result.

Keywords

References

  1. J. Chem. Phys. v.31 I. Shavitt
  2. J. Chem. Phys. v.46 R. A. Marcus
  3. J. Amer. Chem. Soc. v.93 D. G. Truhlar;A. Kuppermann
  4. J. Chem. Phys. v.67 R. A. Marcus;M. B. Coltrin
  5. J. Phys. Chem. v.83 B. C. Garrett;D. G. Truhlar
  6. J. Chem. Phys. v.4 J. O. Hirschfelder;H. Eyring;N. Rosen
  7. J. Chem. Phys. v.6 J. O. Hirschfelder
  8. J. Chem. Phys. v.28 G. E. Kimball;J. G. Trulio
  9. J. Chem. Phys. v.40 R. N. Porter;M. Karplus
  10. J. Chem. Phys. v.42 H. Conroy;B. L. Bruner
  11. J. Chem. Phys. v.48 I. Shavitt;R. N. Stevens;F. L. Minn;M. Karplus
  12. J. Amer. Chem. Soc. v.83 H. S. Johnston;D. Rapp
  13. J. Chem. Phys. v.68 P. Siegbahn;B. Liu
  14. J. Chem. Phys. v.68 D. G. Truhlar;C. J. Horowitz
  15. J. Chem. Phys. v.24 A. Cimino;E. Molinari;G. Boato;G. Careri;G. G. Volpi
  16. Can. J. Chem. v.42 W. R. Schultz;D. J. LeRoy
  17. J. Chem. Phys. v.42 W. R. Schultz;D. J. LeRoy
  18. J. Chem. Phys. v.47 A. A. Westenberg;N. de Haas
  19. J. Chem. Phys. v.58 D. N. Mitchell;D. J. LeRoy
  20. Chemical Kineties R. Weston, Jr.;H. A. Schwarz
  21. Optimization Techniques with Fortran J. L. Kuester;J. H. Mize
  22. J. Chem. Phys. v.38 E. W. Schlag
  23. Gas Phase Reaction Rate Theory H. S. Johnston
  24. Trans. Faraday Soc. v.60 V. Gold
  25. J. Chem. Phys. v.42 E. W. Schlag;G. R. Haller
  26. J. Chem. Phys. v.42 D. M. Bishop;K. J. Laidler
  27. Trans. Faraday Soc v.64 J. N. Murrell;K. J. Laidler
  28. Trans. Faraday Soc. v.66 J. N. Murrell;G. L. Prett
  29. Trans. Faraday Soc. v.66 D. M. Bishop;K. J. Laidler
  30. J. Amer. Chem. Soc. v.100 D. R. Coulson
  31. J. Chem. Phys. v.49 I. Shavitt
  32. J. Phys. Chem. v.83 B. C. Garrett;D. G. Truhlar
  33. J. Phys. Chem. v.83 B. C. Garrett;D. G. Truhlar
  34. Phys. Rev. v.35 C. Eckart
  35. Z. Physik Chem. (Leipzig) v.B19 E. Wigner
  36. Trans. Faraday Soc. v.55 R. P. Bell