Study on the Sequential Generation of Monthly Rainfall Amounts

월강우량의 모의발생에 관한 연구

  • Published : 1976.12.01

Abstract

This study was carried out to clarify the stochastic characteristics of monthly rainfalls and to select a proper model for generating the sequential monthly rainfall amounts. The results abtained are as follows: 1. Log-Normal distribution function is the best fit theoretical distribution function to the empirical distribution of monthly rainfall amounts. 2. Seasonal and random components are found to exist in the time series of monthly rainfall amounts and non-stationarity is shown from the correlograms. 3. The Monte Carlo model shows a tendency to underestimate the mean values and standard deviations of monthly rainfall amounts. 4. The 1st order Markov model reproduces means, standard deviations, and coefficient of skewness with an error of ten percent or less. 5. A correlogram derived from the data generated by 1st order Markov model shows the charaterstics of historical data exactly. 6. It is concluded that the 1st order Markov model is superior to the Monte Carlo model in their reproducing ability of stochastic properties of monthly rainfall amounts.

Keywords