Adsorption Mechanism of Alkyl Ketones on Cation Supported by Layer Silicate. Link Formation of Hydroxyl Group

Layer Silicate에 지지된 양이온상에서 일어나는 Alkyl Ketones의 흡착기구. 水酸基의 Link 形成理論

  • Jong Taik Kim (Department of Applied Chemistry, Kyungpook National University) ;
  • Jong Rack Sohn (Department of Applied Chemistry, Kyungpook National University)
  • 김종탁 (慶北大學校 工科大學 工業化學科) ;
  • 손종락 (경북대학교 공과대학 공업화학과)
  • Published : 1973.08.30

Abstract

The self supported film specimen of Wyoming montmorillonite as a layer silicate saturated by cations,$Li^{+},\;Na^{+},\;K^{+},\;Ca^{2+},\;Ni^{2+},\;Al^{3+}$and$F^{3+}$ were allowed to contact acetone, methyl-ethyl ketone and diethyl ketone within the heatable gas cell. The i.r. spectra between $4000{\sim}1200cm^{-1}$ at different pressures of adsorbates indicated bond formation through carbonyl oxygen. Two types of carbonyl bond shift with maxima at $1713cm^{-1}$ and $1690cm^{-1}$ are attributed as coordinate bond formation of carbonyl with either surface hydroxyl or cationic hydroxyl group. The intensity of the vOH was analyzed and resonance form of cationic hydroxyl was proposed as an adsorption site. The tendency to form coordinate bond was in good agreement with calculated formal charge of carbonyl oxygen in an increasing order, acetone < methyl-ethyl ketone < diethyl ketone. As an additional mechanism of adsorption, weak hydrogen bonding of methyl hydrogen with surface oxygen was observed.

$Li^{+},\;Na^{+},\;K^{+}, Ca^{2+},\;Ni^{2+},\;Al^{3+}$, 과 $F^{3+}$의 陽이온을 포화시킨 Wyoning montmorillonite에 acetone, methyl-ethyl ketone. diethyl ketone을 加熱用 i.r. gas cell 內에서 各各 다른 壓力아래 吸着시켜 $4000{\sim}1200cm^{-1}$에서spectra를 얻었다.두가지 형태의 C=O결합변화가$1713cm^{-1}$$1690cm^{-1}$ 나타났으며 이들은 陽이온의 水酸基 및 吸着水와 그리고 表面水酸基와 水素結合을 일으키는 결과로 나타났다. OH 吸收 spectra의 强度는 陽이온의 水酸基의 resonance 理論을 뒷받침해 주었다. coordinate bond를 일으키는 경향은 計算한 C=O기의 酸素의 formal charge의 크기와 잘 맞았다.

Keywords

References

  1. J. Phys. Chem. v.70 G. Blyholder;Laurence D. Neff
  2. J. Amer. Chem. Soc. v.85 R.B. King
  3. J. Catal. v.20 R.P. Young;N. Sheppard
  4. J. Phys. Chem. v.71 R.O. Kagel
  5. Can. J. Chem. v.47 R.P. Young
  6. J. Amer. Chem. Soc. v.83 W.R. McClellan
  7. J. Catal. v.20 R.P. Young;N. Sheppard
  8. J. Amer. Chem. Soc. v.67 W.F. Bradley
  9. J. Catal. v.19 A.K. Galway
  10. J. Phys. Chem. v.74 F.H. Van Canwelaert;J. B. Van Assche;J. B. Uytterhoeven
  11. J. Phys. Chem. v.72 J.B. Peri;A. L. Hensley
  12. J. Phys. Chem. v.75 T.J. Pinnavia;M.M. Mortland
  13. J. Chem. Phys. V.C. Farmer;M. M. Mortland
  14. Dissertation, N.C. State U. The adsorption of substituted urea compounds on montmorillonite J.T. Kim
  15. J. Chem. Soc. G. Del Re
  16. J. Phys. Chem. v.74 M. M. Bhasin;C. Curran;G.S. John
  17. Trans Faraday Soc. v.67 V.C. Farmer;J. D. Russel
  18. J. Amer. Chem. Soc. v.75 B. Nolin;R. N. Jones
  19. J. Chem. Phys. v.6 S.C. Schumann;John G. Aston
  20. The infrared spectra of complex molecules L.J. Bellamy
  21. introduction to molecular spectroscopy G.M. Barrow
  22. Molecular spectra and molecular structure G. Herzberg