Acknowledgement
This work was supported by the Ajou University Research Fund.
References
- D. Hui, H. Hao, L. Dehuan, D. Yichuan, S. Cheng, Automatic Indoor Construction Process Monitoring for Tiles Based on BIM and Computer Vision, J. Constr. Eng. Manage. 146 (2020) 04019095.
- P. Martinez, M. Al-Hussein, R. Ahmad, A scientometric analysis and critical review of computer vision applications for construction, Autom. Constr. 107 (2019) 102947.
- H. Perez, J.H. Tah, Deep learning smartphone application for real-time detection of defects in buildings, Structural Control and Health Monitoring. 28 (2021) e2751.
- D. Thikra, Z. Zhenhua, Z. Tarek, Computer Vision-Based Model for Moisture Marks Detection and Recognition in Subway Networks, J. Comput. Civ. Eng. 32 (2018) 04017079.
- H. Luo, L. Lin, K. Chen, M.F. Antwi-Afari, L. Chen, Digital technology for quality management in construction: A review and future research directions, Developments in the Built Environment. 12 (2022) 100087.
- Z. Gong, P. Zhong, W. Hu, Diversity in machine learning, Ieee Access. 7 (2019) 64323-64350.
- F.E. Nowruzi, P. Kapoor, D. Kolhatkar, F.A. Hassanat, R. Laganiere, J. Rebut, How much real data do we actually need: Analyzing object detection performance using synthetic and real data, arXiv preprint arXiv:1907.07061. (2019).
- D. Kim, The priority analysis of defect type through tenant preliminary research in apartment house, Master's Thesis, Korea University. (2016).
- H. Ying, R. Sacks, A. Degani, Synthetic image data generation using BIM and computer graphics for building scene understanding, Autom. Constr. 154 (2023) 105016.
- K. Park, S. Ergan, C. Feng, Quality assessment of residential layout designs generated by relational Generative Adversarial Networks (GANs), Autom. Constr. 158 (2024) 105243.
- L. Eversberg, J. Lambrecht, Generating images with physics-based rendering for an industrial object detection task: Realism versus domain randomization, Sensors. 21 (2021) 7901.
- J. Kim, D. Kim, S. Lee, S. Chi, Hybrid DNN training using both synthetic and real construction images to overcome training data shortage, Autom. Constr. 149 (2023) 104771.
- T. Hodan, V. Vineet, R. Gal, E. Shalev, J. Hanzelka, T. Connell, P. Urbina, S.N. Sinha, B. Guenter, Photorealistic image synthesis for object instance detection, (2019) 66-70.
- Y. Hong, S. Park, H. Kim, H. Kim, Synthetic data generation using building information models, Autom. Constr. 130 (2021) 103871.
- H. Lee, J. Jeon, D. Lee, C. Park, J. Kim, D. Lee, Game engine-driven synthetic data generation for computer vision-based safety monitoring of construction workers, Autom. Constr. 155 (2023) 105060.
- C. Siu, M. Wang, J.C.P. Cheng, A framework for synthetic image generation and augmentation for improving automatic sewer pipe defect detection, Autom. Constr. 137 (2022) 104213.
- T. Tschickardt, F. Kaufmann, C. Glock, Lean and BIM based flight planning for automated data acquisition of bridge structures with LiDAR UAV during construction phase, 3 (2022) 0.
- P. Mittal, R. Singh, A. Sharma, Deep learning-based object detection in low-altitude UAV datasets: A survey, Image Vision Comput. 104 (2020) 104046.
- D. Wallace, Y.H. He, J.C. Vaz, L. Georgescu, P.Y. Oh, Multimodal teleoperation of heterogeneous robots within a construction environment, (2020) 2698-2705.
- Y. Tan, W. Yi, P. Chen, Y. Zou, An adaptive crack inspection method for building surface based on BIM, UAV and edge computing, Autom. Constr. 157 (2024) 105161.