과제정보
This research was conducted with the support of the "National R&D Project for Smart Construction Technology (No.RS-2020-KA156291)" funded by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport, and managed by the Korea Expressway Corporation.
참고문헌
- C.S. Accidents, Keller & Keller, (2024).
- OSHA, Accident Search Results, (2023). https://www.osha.gov/ords/imis/accidentsearch.search?sic=&sicgroup=&naics=&acc_description=&acc_abstract=&acc_keyword=forklift&inspnr=&fatal=&officetype=All&office=All&startmonth=07&startday=17&startyear=2024&endmonth=07&endday=17&endyear=2018&keyword_lis.
- Work-related fatal injuries in great britain. (2023)., Health and Safety Exective, (2024). https://www.hse.gov.uk/statistics/fatals.htm (accessed February 14, 2024).
- K.O. Safety, and H. Agency., Ministry of Employment and Labor., (n.d.). https://www.kosha.or.kr/kosha/index.do (accessed February 14, 2024).
- O.S. and H. Administration, Portable Ladder Safety, (2024). https://www.osha.gov/lawsregs/regulations/standardnumber/1926/1926.1053 (accessed February 14, 2024).
- R. Hussain, A. Sabir, D. Lee, S. Farhan, A. Zaidi, A. Pedro, M. Sibtain, C. Park, Automation in Construction Conversational AI-based VR system to improve construction safety training of migrant workers, Autom. Constr. 160 (2024) 105315. https://doi.org/10.1016/j.autcon.2024.105315.
- S. Anjum, M. Sibtain, R. Khalid, M. Khan, A Worker-Driven Approach for Opening Detection by Integrating Computer Vision and Built-in Inertia Sensors on Embedded Devices, (2022).
- S.F.A. Zaidi, R. Hussain, M.S. Abbas, J. Yang, D. Lee, C. Park, iSafe Welding System: Computer Vision-Based Monitoring System for Safe Welding Work, in: 23rd Int. Conf. Constr. Appl. Virtual Real., 2023: pp. 669-675. https://doi.org/10.36253/979-12-215-0289-3.66.
- M.S. Abbas, A. Sabir, N. Khan, S.F.A. Zaidi, R. Hussain, J. Yang, C. Park, Computer Vision-Based Monitoring Framework for Forklift Safety at Construction Site, in: 23rd Int. Conf. Constr. Appl. Virtual Real., 2023: pp. 676-682. https://doi.org/10.36253/979-12-215-0289-3.67.
- N. Khan, M.R. Saleem, D. Lee, M.W. Park, C. Park, Utilizing safety rule correlation for mobile scaffolds monitoring leveraging deep convolution neural networks, Comput. Ind. 129 (2021). https://doi.org/10.1016/J.COMPIND.2021.103448.
- S.U. Amin, M. Ullah, M. Sajjad, F.A. Cheikh, M. Hijji, A. Hijji, K. Muhammad, EADN: An Efficient Deep Learning Model for Anomaly Detection in Videos, Mathematics. 10 (2022) 1-15. https://doi.org/10.3390/math10091555.
- S.U. Amin, A. Hussain, B. Kim, S. Seo, Deep learning based active learning technique for data annotation and improve the overall performance of classification models[Formula presented], Expert Syst. Appl. 228 (2023) 120391. https://doi.org/10.1016/j.eswa.2023.120391.
- J. Seo, S. Han, S. Lee, H. Kim, Computer vision techniques for construction safety and health monitoring, Adv. Eng. Informatics. 29 (2015) 239-251. https://doi.org/10.1016/j.aei.2015.02.001.
- M. Golparvar-Fard, F. Pena-Mora, S. Savarese, Automated Progress Monitoring Using Unordered Daily Construction Photographs and IFC-Based Building Information Models, J. Comput. Civ. Eng. 29 (2015) 1-19. https://doi.org/10.1061/(asce)cp.1943-5487.0000205.
- S. Anjum, N. Khan, R. Khalid, M. Khan, D. Lee, C. Park, Fall Prevention From Ladders Utilizing a Deep Learning-Based Height Assessment Method, IEEE Access. 10 (2022) 36725-36742. https://doi.org/10.1109/ACCESS.2022.3164676.
- K.G.F. LADDERS, Ladder Safety Rules in KOSHA, 2021-Bus. Gen. Headquarters-779. (2021). https://www.kosha.or.kr/kosha/data/mediaBankMain.do?medSeq=43740&codeSeq=1100000&medForm=&menuId=-1100000&mode=detail (accessed February 14, 2024).
- G. Jocher, Ultralytics YOLOv5, (2020). https://doi.org/10.5281/zenodo.3908559.