Acknowledgement
이 논문은 정부(교육부-산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0022098, 2023년 미래형자동차 기술융합 혁신인재 양성사업)
DOI QR Code
모바일 로봇의 자율주행을 위하여 인터넷이 제약된 환경에서도 가능한 Edge computing 에서의 Object Detection 이 필수적이다. 본 논문에서는 이를 위해 Orin 보드에서 YOLOv7 과 Complex_YOLOv4 를 구현하였다. 직접 취득한 데이터를 통해 YOLOv7 을 구현한 결과 0.56 의 mAP 로 프레임당 133ms 가 소요되었다. Kitti Dataset 을 통해 Complex_YOLOv4 를 구현한 결과 0.88 의 mAP 로 프레임당 236ms 가 소요되었다. Comple_YOLOv4 가 YOLOv7 보다 더 많은 데이터를 예측하기에 시간은 더 소요되지만 높은 정확성을 가지는 것을 확인할 수 있었다.
이 논문은 정부(교육부-산업통상자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0022098, 2023년 미래형자동차 기술융합 혁신인재 양성사업)