Acknowledgement
본 논문은 과학기술정보통신부 정보통신창의인재양성사업의 지원을 통해 수행한 ICT멘토링 프로젝트 결과물입니다
DOI QR Code
현재 사회적 문제로 잘못된 자원 재활용 방법 및 경비 노동자 근로 환경 개선 필요성이 지속해서 대두되고 있으며, 최근 발생한 코로나바이러스로 인하여 배달 음식의 수요가 증가하여 각 가정에서 배출되는 쓰레기의 양이 매우 증가하였다. 이러한 사회적 문제를 효율적으로 대처하기 위하여 본 논문에서는 분리수거가 가능한 사물을 인식하여 AI 모듈로 객체 정보를 전송하고 전송된 정보에 따라 적절한 분리수거를 수행하는 스마트 분리수거 자동화 시스템을 개발하였다. 본 연구에서는 잘못된 객체 정보 전송을 최소화하고, 객체 인식률의 정확도를 높이기 위하여 많은 종류의 Custom dataset을 Yolo_Mark, Scaling Annoter Tool을 이용하여 직접 라벨링 하였으며 K-means Clustering 알고리즘을 적용하여 더욱 정확한 분리수거 자동화 시스템을 구현하였다. 본 연구를 바탕으로 불필요한 자원과 인력 낭비를 줄일 수 있으며, 인간이 아닌 시스템에 의해 통제되므로 더욱 정확한 분리수거가 가능하다.
본 논문은 과학기술정보통신부 정보통신창의인재양성사업의 지원을 통해 수행한 ICT멘토링 프로젝트 결과물입니다