Acknowledgement
본 프로젝트는 과학기술정보통신부 정보통신창의인재양성사업의 지원을 통해 수행한 ICT멘토링 프로젝트 결과물입니다.
DOI QR Code
자율주행의 시대가 도래함에 따라, 딥러닝 모델에 대한 적대적 공격 위험이 함께 증가하고 있다. 카메라 기반 자율주행차량이 공격받을 경우 보행자나 표지판 등에 대한 오분류로 인해 심각한 사고로 이어질 수 있어, 자율주행 시스템에서의 적대적 공격에 대한 방어 및 보안 기술 연구가 필수적이다. 이에 본 논문에서는 GTSRB 표지판 데이터를 이용하여 각종 공격 및 방어 기법을 개발하고 제안한다. 시간 및 정확도 측면에서 성능을 비교함으로써, 자율주행에 최적인 모델을 탐구하고 더 나아가 해당 모델들의 완전자율주행을 위한 발전 방향을 제안한다.
본 프로젝트는 과학기술정보통신부 정보통신창의인재양성사업의 지원을 통해 수행한 ICT멘토링 프로젝트 결과물입니다.