한국컴퓨터정보학회:학술대회논문집 (Proceedings of the Korean Society of Computer Information Conference)
- 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
- /
- Pages.65-68
- /
- 2021
Dilated U-Net에 기반한 이미지 복원 기법을 이용한 콘크리트 균열 탐지 개선 방안
Improvement of concrete crack detection using Dilated U-Net based image inpainting technique
- Kim, Su-Min (Epozen's research institute) ;
- Sohn, Jung-Mo (Epozen's research institute) ;
- Kim, Do-Soo (Epozen's research institute)
- 발행 : 2021.01.21
초록
본 연구에서는 Dilated U-Net 기반의 이미지 복원기법을 통해 콘크리트 균열 추출 성능 개선 방안을 제안한다. 콘크리트 균열은 구조물의 미관상의 문제뿐 아니라 추후 큰 안전사고의 원인이 될 수 있어 초기대응이 중요하다. 현재는 점검자가 직접 육안으로 검사하는 외관 검사법이 주로 사용되고 있지만, 이는 정확성 및 비용, 시간, 그리고 안전성 면에서 한계를 갖고 있다. 이에 콘크리트 구조물 표면에 대해 획득한 영상 처리 기법을 사용한 검사 방식 도입의 관심이 늘어나고 있다. 또한, 딥러닝 기술의 발달로 딥러닝을 적용한 영상처리의 연구 역시 활발하게 진행되고 있다. 본 연구는 콘크리트 균열 추개선출 성능 개선을 위해 Dilated U-Net 기반의 이미지 복원기법을 적용하는 방안을 제안하였고 성능 검증 결과, 기존 U-Net 기반의 정확도가 98.78%, 조화평균 82.67%였던 것에 비해 정확도 99.199%, 조화평균 88.722%로 성능이 되었음을 확인하였다.