Interplay between Defect Propagation and Surface Hydrogen in Silicon Nanowire Kinking Superstructures

  • Published : 2015.08.24

Abstract

The vapor-liquid-solid (VLS) method, where the "liquid" catalytic droplets collecting atoms from vapor precursors build the solid crystal layers via supersaturation, is a ubiquitous technique to synthesize 1-dimensional nanoscale materials. However, the lack of fundamental understanding of chemical information governing the process inhibits the rational route to the structural programming. By combining the in situ or operando IR spectroscopy with post-growth high resolution electron microscopy, we show the strong correlation between the surface chemical species concentration and nanowire structures. More specifically, the critical role of surface adsorbed hydrogen, generated from the decomposition of Si2H6 precursor on the interplay between nanowire / kinking and the defect propagation is demonstrated. Our results show that adsorbed hydrogen atoms are responsible for selecting -oriented growth and indicate that a twin boundary imparts structural coherence. The twin boundary, only continuous at / kinks, reduces the symmetry of the trijunction and limits the number of degenerate directions available to the nanowire. These findings constitute a general approach for rationally engineering kinking superstructures and also provide important insight into the role of surface chemical bonding during VLS synthesis.

Keywords