A Study on Algorithm of Edge Detection in Mixed Noise Environments

복합잡음 환경에서 에지 검출에 관한 알고리즘에 관한 연구

  • Published : 2014.05.28

Abstract

Currently, edge detection is utilized in various areas. Edge detection is the preprocessing process for image processing in general, and this is a technology that is considered essential for image processing. According, research on this subject is carried out incessantly. Edge has important image related elements such as size, direction and location of the object of an image. Numerous methods were proposed for the detection. Among them, the representative methods are Sobel, Prewitt, Roberts, Laplacian. However, these existing methods are rather lacking when it comes to the edge detection characteristics in case of the image with mixed noise. Therefore, this study presented edge detection method that utilizes median and average values for the elements depending on the size and location of local mask.

현재 에지 검출은 여러 분야에서 사용되고 있으며, 대부분의 영상처리의 전처리 과정 및 영상처리에 있어서 필수불가결한 기술이다. 이에 따라 관련 연구가 끊임없이 진행되어 오고 있다. 이러한 에지는 영상의 물체에 대한 크기, 방향, 위치 등의 중요한 영상 요소를 가지고 있다. 이를 검출하기 위한 여러 방법들이 제안되어 왔으며, 그 중 대표적인 방법은 Sobel, Prewitt, Roberts, Laplacian, LoG(Laplacian of Gaussian) 등이 있다. 그러나 이러한 기존의 방법들은 복합잡음이 첨가된 영상에서 에지 검출 특성이 미흡하다. 따라서 본 연구에서는 국부 마스크의 크기와 위치에 따라 요소에 대한 중앙값 및 평균값을 이용한 에지 검출 방법을 제안하였다.

Keywords