Neural Network-based Real-time End Point Detection Specialized for Accelerometer Signal

신경망을 이용한 실시간 가속도 신호 끝점 검출 방법

  • Published : 2009.02.09

Abstract

A signal processing algorithm is proposed for end point detection which is used commonly in accelerometers-based pattern recognition problem. In the conventional method, end points are detected by manual manipulation with an additive button or algorithm based on statistical computation and highpass filtering to cause critical time delay and difficulty for parameters optimization. As an solution, we propose a focused Time Lagged Feedforward Network(TLFN) with respect to a differential signal of acceleration, which is widely applied for time series forecasting. The simple experiment is conducted with handwriting and the detection performance and response characteristic of the proposed algorithm is tested and analyzed.

가속도계 신호를 대상으로 패턴 인식을 행하는 연구에서 공통적으로 사용될 수 있는 끝점 검출 방법을 제안한다. 기존의 연구 결과물은 추가적인 단추 등을 부착하여 수동으로 구분하거나, 고성능 고주파 대역 필터 등의 사용으로 알고리즘 상에서 필히 시간 지연이 발생하며 또한 알고리즘 구현상 여러 매개 변수 및 이를 위한 문턱값이 존재하였다. 본 논문에서는 가속도의 일계도 미분의 시퀀스를 입력 벡터로 사용하여, 시계열 데이터 예측과 유사한 형태로 focused Time Lagged Feedforward Network(TLFN)을 설계, 이를 학습시키는 방법을 제안 하였다. 제안한 방법을 글자 궤적에 대해 적용하여 신뢰도 있는 끝점 검출 성능과 실시간 응답 특성을 확인하였다.

Keywords