실외 주행 로봇의 위치 추정을 위한 3 차원 물체 인식
3D Object Recognition for Localization of Outdoor Robotic Vehicles
초록
본 논문에서는 지능형 무인 운송 시스템의 위치 인식 문제를 풀기 위한 방법으로, 실외 환경에서 보이는 건물 혹은 건물 입구의 상대적 위치와 자세 추정이 가능한 파티클 필터 기반 3 차원 물체 인식 방법을 제안한다. 제안하는 파티클 필터에 기반한 인식 시스템은 다양한 인식 증거들을 연속 영상에서 융합 및 모델 매칭을 함으로써 강인한 3 차원 물체 인식 및 자세 추정이 가능하다. 제안하는 방법은, 적합한 인식 증거들을 수집/선택하고, 다양한 인식 증거들로 부터 나타나는 인식 대상의 자세를 3 차원 공간상의 확률적인 파티클로 표현하며, 파티클 필터링을 통하여 연속 영상 상의 다양한 인식 증거들을 융합하는 것을 특징으로 한다. 스테레오 카메라를 이용한 실험을 통하여, 제안하는 방법이 실외 건물의 기하학적 특정을 인식 증거로 활용한 효율적인 3 차원 인식 및 자세 추정을 수행하는 것은 보여준다.
In this paper, to solve localization problem for out-door navigation of robotic vehicles, a particle filter based 3D object recognition framework that can estimate the pose of a building or its entrance is presented. A particle filter framework of multiple evidence fusion and model matching in a sequence of images is presented for robust recognition and pose estimation of 3D objects. The proposed approach features 1) the automatic selection and collection of an optimal set of evidences 2) the derivation of multiple interpretations, as particles representing possible object poses in 3D space, and the assignment of their probabilities based on matching the object model with evidences, and 3) the particle filtering of interpretations in time with the additional evidences obtained from a sequence of images. The proposed approach has been validated by the stereo-camera based experimentation of 3D object recognition and pose estimation, where a combination of photometric and geometric features are used for evidences.