• 제목/요약/키워드: 3D object recognition

검색결과 268건 처리시간 0.024초

3차원 영상 객체 휴먼팩터 알고리즘 측정에 관한 연구 (A Research on the Measurement of Human Factor Algorithm 3D Object)

  • 최병관
    • 디지털산업정보학회논문지
    • /
    • 제14권2호
    • /
    • pp.35-47
    • /
    • 2018
  • The 4th industrial revolution, digital image technology has developed beyond the limit of multimedia industry to advanced IT fusion and composite industry. Particularly, application technology related to HCI element algorithm in 3D image object recognition field is actively developed. 3D image object recognition technology evolved into intelligent image sensing and recognition technology through 3D modeling. In particular, image recognition technology has been actively studied in image processing using object recognition recognition processing, face recognition, object recognition, and 3D object recognition. In this paper, we propose a research method of human factor 3D image recognition technology applying human factor algorithm for 3D object recognition. 1. Methods of 3D object recognition using 3D modeling, image system analysis, design and human cognitive technology analysis 2. We propose a 3D object recognition parameter estimation method using FACS algorithm and optimal object recognition measurement method. In this paper, we propose a method to effectively evaluate psychological research techniques using 3D image objects. We studied the 3D 3D recognition and applied the result to the object recognition element to extract and study the characteristic points of the recognition technology.

다면기법 SPFACS 영상객체를 이용한 AAM 알고리즘 적용 미소검출 설계 분석 (Using a Multi-Faced Technique SPFACS Video Object Design Analysis of The AAM Algorithm Applies Smile Detection)

  • 최병관
    • 디지털산업정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.99-112
    • /
    • 2015
  • Digital imaging technology has advanced beyond the limits of the multimedia industry IT convergence, and to develop a complex industry, particularly in the field of object recognition, face smart-phones associated with various Application technology are being actively researched. Recently, face recognition technology is evolving into an intelligent object recognition through image recognition technology, detection technology, the detection object recognition through image recognition processing techniques applied technology is applied to the IP camera through the 3D image object recognition technology Face Recognition been actively studied. In this paper, we first look at the essential human factor, technical factors and trends about the technology of the human object recognition based SPFACS(Smile Progress Facial Action Coding System)study measures the smile detection technology recognizes multi-faceted object recognition. Study Method: 1)Human cognitive skills necessary to analyze the 3D object imaging system was designed. 2)3D object recognition, face detection parameter identification and optimal measurement method using the AAM algorithm inside the proposals and 3)Face recognition objects (Face recognition Technology) to apply the result to the recognition of the person's teeth area detecting expression recognition demonstrated by the effect of extracting the feature points.

3D REID 시스템을 이용한 사물 인식 (Object Recognition Using 3D RFID System)

  • 노세곤;이영훈;최혁렬
    • 제어로봇시스템학회논문지
    • /
    • 제11권12호
    • /
    • pp.1027-1038
    • /
    • 2005
  • Object recognition in the field of robotics generally has depended on a computer vision system. Recently, RFID(Radio Frequency IDentification) has been suggested as technology that supports object recognition. This paper, introduces the advanced RFID-based recognition using a novel tag which is named a 3D tag. The 3D tag was designed to facilitate object recognition. The proposed RFID system not only detects the existence of an object, but also estimates the orientation and position of the object. These characteristics allow the robot to reduce considerably its dependence on other sensors for object recognition. In this paper, we analyze the characteristics of the 3D tag-based RFID system. In addition, the estimation methods of position and orientation using the system are discussed.

Object Recognition of Robot Using 3D RFID System

  • Roh, Se-Gon;Park, Jin-Ho;Lee, Young-Hoon;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.62-67
    • /
    • 2005
  • Object recognition in the field of robotics generally has depended on a computer vision system. Recently, RFID(Radio Frequency IDentification) technology has been suggested to support recognition and has been rapidly and widely applied. This paper introduces the more advanced RFID-based recognition. A novel tag named 3D tag, which facilitates the understanding of the object, was designed. The previous RFID-based system only detects the existence of the object, and therefore, the system should find the object and had to carry out a complex process such as pattern match to identify the object. 3D tag, however, not only detects the existence of the object as well as other tags, but also estimates the orientation and position of the object. These characteristics of 3D tag allows the robot to considerably reduce its dependence on other sensors required for object recognition the object. In this paper, we analyze the 3D tag's detection characteristic and the position and orientation estimation algorithm of the 3D tag-based RFID system.

  • PDF

3D Holographic Image Recognition by Using Graphic Processing Unit

  • Lee, Jeong-A;Moon, In-Kyu;Liu, Hailing;Yi, Faliu
    • Journal of the Optical Society of Korea
    • /
    • 제15권3호
    • /
    • pp.264-271
    • /
    • 2011
  • In this paper we examine and compare the computational speeds of three-dimensional (3D) object recognition by use of digital holography based on central unit processing (CPU) and graphic processing unit (GPU) computing. The holographic fringe pattern of a 3D object is obtained using an in-line interferometry setup. The Fourier matched filters are applied to the complex image reconstructed from the holographic fringe pattern using a GPU chip for real-time 3D object recognition. It is shown that the computational speed of the 3D object recognition using GPU computing is significantly faster than that of the CPU computing. To the best of our knowledge, this is the first report on comparisons of the calculation time of the 3D object recognition based on the digital holography with CPU vs GPU computing.

인공지능 객체인식에 관한 파라미터 측정 연구 (A Study On Parameter Measurement for Artificial Intelligence Object Recognition)

  • 최병관
    • 디지털산업정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.15-28
    • /
    • 2019
  • Artificial intelligence is evolving rapidly in the ICT field, smart convergence media system and content industry through the fourth industrial revolution, and it is evolving very rapidly through Big Data. In this paper, we propose a face recognition method based on object recognition based on object recognition through artificial intelligence. In this method, Were experimented and studied through the object recognition technique of artificial intelligence. In the conventional 3D image field, general research on object recognition has been carried out variously, and researches have been conducted on the side effects of visual fatigue and dizziness through 3D image. However, in this study, we tried to solve the problem caused by the quantitative difference between object recognition and object recognition for human factor algorithm that measure visual fatigue through cognitive function, morphological analysis and object recognition. Especially, The new method of computer interaction is presented and the results are shown through experiments.

LSG:모델 기반 3차원 물체 인식을 위한 정형화된 국부적인 특징 구조 (LSG;(Local Surface Group); A Generalized Local Feature Structure for Model-Based 3D Object Recognition)

  • 이준호
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.573-578
    • /
    • 2001
  • This research proposes a generalized local feature structure named "LSG(Local Surface Group) for model-based 3D object recognition". An LSG consists of a surface and its immediately adjacent surface that are simultaneously visible for a given viewpoint. That is, LSG is not a simple feature but a viewpoint-dependent feature structure that contains several attributes such as surface type. color, area, radius, and simultaneously adjacent surface. In addition, we have developed a new method based on Bayesian theory that computes a measure of how distinct an LSG is compared to other LSGs for the purpose of object recognition. We have experimented the proposed methods on an object databaed composed of twenty 3d object. The experimental results show that LSG and the Bayesian computing method can be successfully employed to achieve rapid 3D object recognition.

  • PDF

Hough 변환을 이용한 캐드 기반 삼차원 물체 인식 (CAD-Based 3-D Object Recognition Using Hough Transform)

  • Ja Seong Ku;Sang Uk Lee
    • 전자공학회논문지B
    • /
    • 제32B권9호
    • /
    • pp.1171-1180
    • /
    • 1995
  • In this paper, we present a 3-D object recognition system in which the 3-D Hough transform domain is employed to represent the 3-D objects. In object modeling step, the features for recognition are extracted from the CAD models of objects to be recognized. Since the approach is based on the CAD models, the accuracy and flexibility are greatly improved. In matching stage, the sensed image is compared with the stored model, which is assumed to yield a distortion (location and orientation) in the 3-D Hough transform domain. The high dimensional (6-D) parameter space, which defines the distortion, is decomposed into the low dimensional space for an efficient recognition. At first we decompose the distortion parameter into the rotation parameter and the translation parameter, and the rotation parameter is further decomposed into the viewing direction and the rotational angle. Since we use the 3-D Hough transform domain of the input images directly, the sensitivity to the noise and the high computational complexity could be significantly alleviated. The results show that the proposed 3-D object recognition system provides a satisfactory performance on the real range images.

  • PDF

레이저 슬릿빔과 CCD 카메라를 이용한 3차원 영상인식 (3D image processing using laser slit beam and CCD camera)

  • 김동기;윤광의;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.40-43
    • /
    • 1997
  • This paper presents a 3D object recognition method for generation of 3D environmental map or obstacle recognition of mobile robots. An active light source projects a stripe pattern of light onto the object surface, while the camera observes the projected pattern from its offset point. The system consists of a laser unit and a camera on a pan/tilt device. The line segment in 2D camera image implies an object surface plane. The scaling, filtering, edge extraction, object extraction and line thinning are used for the enhancement of the light stripe image. We can get faithful depth informations of the object surface from the line segment interpretation. The performance of the proposed method has demonstrated in detail through the experiments for varies type objects. Experimental results show that the method has a good position accuracy, effectively eliminates optical noises in the image, greatly reduces memory requirement, and also greatly cut down the image processing time for the 3D object recognition compared to the conventional object recognition.

  • PDF

3D Object Recognition Using SOFM (3D Object Recognition Using SOFM)

  • 조현철;손호웅
    • 지구물리
    • /
    • 제9권2호
    • /
    • pp.99-103
    • /
    • 2006
  • 3D object recognition independent of translation and rotation using an ultrasonic sensor array, invariant moment vectors and SOFM(Self Organizing Feature Map) neural networks is presented. Using invariant moment vectors of the acquired 16×8 pixel data of square, rectangular, cylindric and regular triangular blocks, 3D objects could be classified by SOFM neural networks. Invariant moment vectors are constant independent of translation and rotation. The recognition rates for the training and testing data were 95.91% and 92.13%, respectively.

  • PDF