근전도 기반의 실시간 등척성 손가락 힘 예측 알고리즘 개발

Development of a Real-Time Algorithm for Isometric Pinch Force Prediction from Electromyogram (EMG)

  • 발행 : 2008.11.05

초록

This paper describes a real-time isometric pinch force prediction algorithm from surface electromyogram (sEMG) using multilayer perceptron (MLP) for human robot interactive applications. The activities of seven muscles which are observable from surface electrodes and also related to the movements of the thumb and index finger joints were recorded during pinch force experiments. For the successful implementation of the real-time prediction algorithm, an off-line analysis was performed using the recorded activities. Four muscles were selected for the force prediction by using the Fisher linear discriminant analysis among seven muscles, and the four muscle activities provided effective information for mapping sEMG to the pinch force. The MLP structure was designed to make training efficient and to avoid both under- and over-fitting problems. The pinch force prediction algorithm was tested on five volunteers and the results were evaluated using two criteria: normalized root mean squared error (NRMSE) and correlation (CORR). The training time for the subjects was only 2 min 29 sec, but the prediction results were successful with NRMSE = 0.112 ${\pm}$ 0.082 and CORR = 0.932 ${\pm}$ 0.058. These results imply that the proposed algorithm is useful to measure the produced pinch force without force sensors in real-time. The possible applications include controlling bionic finger robot systems to overcome finger paralysis or amputation.

키워드