• Title/Summary/Keyword: Finger force

Search Result 187, Processing Time 0.027 seconds

Development of Force Measuring System using Three-axis Force Sensor for Measuring Two-finger Force (3축 힘센서를 이용한 두 손가락 힘측정장치 개발)

  • Kim, Hyeon-Min;Yoon, Jong-Won;Shin, Hee-Suk;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.876-882
    • /
    • 2010
  • Stroke patients can't use their hands because of the paralysis their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by measuring the pressing force to be contacted with two fingers (thumb and first finger, thumb and middle finger, thumb and ring finger, thumb and little finger). But, at present, the grasping finger force of two-finger can't be accurately measured, because there is not a proper finger-force measuring system. Therefore, doctors can't correctly judge the rehabilitating extent. So, the finger-force measuring system which can measure the grasping force of two-finger must be developed. In this paper, the finger-force measuring system with a three-axis force sensor which can measure the pressing force was developed. The three-axis force sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP (Digital Signal Processing). Also, the grasping force test of men was performed using the developed finger-force measuring system, it was confirmed that the grasping forces of men were different according to grasping methods.

Development of Two-Finger Force Measuring System to Measure Two-Finger Gripping Force and Its Characteristic Evaluation (단축 힘센서를 이용한 두 손가락 잡기 힘측정장치 개발 및 특성평가)

  • Kim, Hyeon-Min;Shin, Hi-Suk;Yoon, Joung-Won;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.172-177
    • /
    • 2011
  • Finger patients can't use their hands because of the paralysis their fingers. Their fingers are recovered by rehabilitating training, and the rehabilitating extent can be judged by measuring the pressing force to be contacted with two fingers(thumb and first finger, thumb and middle finger, thumb and ring finger, thumb and little finger). At present, most hospitals have used a thin plastic-plate for measuring the two-finger grasping force, and we can only judge that they can grasp the plate with their two-finger through it, because the plate can't measure the two-finger grasping force. But, recently, the force measuring system for measuring two-finger grasping force was developed using three-axis force sensor, but it is very expensive, because it has a three-axis force sensor. In this paper, two-finger force measuring system with a one-axis force sensor which can measure two-finger grasping force was developed. The one-axis force sensor was designed and fabricated, and the force measuring device was designed and manufactured using DSP(Digital Signal Processing). Also, the grasping force test of men was performed using the developed two-finger force measuring system, it was confirmed that the grasping forces of men were different according to grasping methods, and the system can be used for measuring two-finger grasping force.

Grip Force, Finger Force, and Comfort analyses of Young and Old People by Hand Tool Handle Shapes (수공구 손잡이 형태에 따른 청.노년층의 악력과 손가락 힘 및 편안함 분석)

  • Kong, Yong-Ku;Sohn, Seong-Tae;Kim, Dae-Min;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.27-34
    • /
    • 2009
  • The purpose of this study was to evaluate aging (young and old), gender (male and female), and handle shape effects on grip force, finger force, and subjective comfort. Four handle shapes of A, D, I, and V were implemented by a multi-finger force measurement (MFFM) system which was developed to measure every finger force with different grip spans. Forty young (20 males and 20 females) and forty old (20 males and 20 females) subjects participated in twelve gripping tasks and rated their comfort for all handles using a 5-point scale. Grip forces were calculating by summation of all four forces of the index, middle, ring and little fingers. Results showed that young males (283.2N) had larger gripping force than old males (235.6N), while young females (151.4N) had lower force than old females (153.6N). Young subjects exerted the largest gripping force with D-shape due to large contribution of the index and middle fingers and the smallest with A-shape; however, old subjects exerted the largest with I-shape and the smallest with V-shape due to small contribution of the ring and little fingers. As expected, the middle finger had the largest finger force and the little finger had the smallest. The fraction of contribution of index and ring fingers to grip force differed among age groups. Interestingly, young subjects provided larger index finger force than ring finger force, whereas old subjects showed that larger ring finger forces than index finger force in the griping tasks. In the relationship between performance and subjective comfort, I-shape exerting the largest grip force had less comfort than D-shape producing the second largest grip force. The findings of this study can provide guidelines on designing hand tool handle to obtain better performance as well as users' comfort.

Development of a Hook-type Finger Force Measuring System with Force Sensors (힘센서를 이용한 후크형 손가락 힘 측정 장치 개발)

  • Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.663-668
    • /
    • 2014
  • This paper presents a hook-type finger force measuring system with force sensors. The system is composed of a body, two three-axis force sensors, a hook, and so on. The two three-axis force sensors system was specially designed using FEM(Finite Element Method) and fabricated using strain-gages. The sensors measure the finger forces of both normal people and handicapped people in the system, and the forces are combined. The developed hook-type finger force measuring system can measure the pulling finger force of both normal and handicapped people. The pulling force tests of men and women were performed using the developed the system. It is thought that the developed system can be used to measure the pulling force of fingers.

SMA-driven Biomimetic Finger Module for Lightweight Hand Prosthesis (경량 의수용 SMA 구동식 생체모방 손가락 모듈)

  • Jung, Sung-Yoon;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.69-75
    • /
    • 2012
  • This paper proposes a biomimetic finger module to be used in a lightweight hand prosthesis. The finger module consists of finger skeleton and an actuator module driven by SMA (Shape Memory Alloy). The prototype finger module can perform flexion and extension motions; finger flexion is driven by a contraction force of SMA, but it is extended by an elastic force of an extension spring inserted into the finger skeleton. The finger motions are controlled by feedback of electric resistance of SMA because the finger module has no sensors to measure length and angle. Total weight of a prototype finger module is 30g. In experiments the finger motions and finger grip force are tested and compared with simulation results when a constant contraction force of SMA is given. The experimental results show that the proposed SMA-driven finger module is feasible to the lightweight hand prosthesis.

Development of four-finger force measuring system of a cylindrical type (원통형 4손가락 힘측정시스템 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.349-355
    • /
    • 2010
  • Stroke patients, etc. can't use their hands because of the paralysis of their fingers, and their fingers could be recovered by rehabilitating training. In order to judge the rehabilitating extent of their fingers, the patients should grasp a cylindrical object in hospital. At present, the used object in hospital is only a cylindrical object, and can't measure the force of fingers. Therefore, doctors judge the rehabilitating extent by touching and watching at their fingers. So, the four-finger force measuring system which can measure the force of their fingers should be developed. In this paper, four-finger force measuring system with four force sensors which can measure the grasping force is developed. The force sensors are designed and fabricated, and the force measuring device is designed and manufactured by using DSP(digital signal processing). Also, the grasping force test of men is performed by using the developed four-finger force measuring system. It was confirmed that the finger average force of right hand is about 214.6 N and that of left hand is about 212.8 N.

Quantitative Evaluation of Rehabilitation Therapy Based on a Two-Finger Force Measurement System

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.357-361
    • /
    • 2014
  • This paper describes the evaluation of the effectiveness of rehabilitation therapy for patients with finger paralysis based on a two-finger force measurement system (TFFMS). The paralyzed fingers can be recovered through rehabilitation therapies. The finger pressing force of the patients can be measured utilizing the TFFMS previously developed by the author [7]. The TFFMS, however, has not been fully adopted as a standard method for evaluating the therapy owing to the lack of a standard protocol. The pressing force of healthy volunteers and patients is analyzed with the TFFMS to explore the feasibility of the TFFMS as an evaluation device. The test confirms that the established standard protocol is useful to quantitatively assess the progress of finger rehabilitation therapy.

Enslaving Effects on Finger Pressing Speed (손가락 누르기 속력에 따른 Enslaving 효과)

  • Woo, Byung-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.217-224
    • /
    • 2007
  • This study was to investigate the effects of enslaving on finger-tip force of other fingers on finger pressing speed. We hypothesized that the effects depend on finger pressing speed, and the fingers proximity and are larger for fingers that are closer to each other. Six healthy, right-handed subjects(age: $27.1{\pm}4.3yr$, height: $175.4{\pm}7.2cm$, weight $71.3{\pm}5.8kg$) participated in the experiment. Each finger showed no significant on task finger speed. In the tasks with two neighboring fingers (e.g. middle and ring finger tasks), the index and middle fingers showed larger forces than the other neighboring fingers. During the index and little finger tasks, the enslaving force magnitude decreased with distance to the task finger (i.e. index finger enslaving force was the smallest during the little finger task).

Development of 3-axis finger force sensor for an intelligent robot's hand (로봇의 지능형 손을 위한 3축 손가락 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.411-416
    • /
    • 2006
  • This paper describes the development of a 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand. In order to safely grasp an unknown object, robot's hand should measure the weight of an object and the force of grasping direction simultaneous. But, in the published papers, the grippers and hands equippd with the force sensor that could only measure the force of grasping direction, and grasped objects using their sensors. These grippers and hands can't safely grasp unknown objects, because they can't measure the weight of it. Thus, it is necessary to develop 3-axis force sensor that can measure the weight of an object and the force of grasping direction for an intelligent gripper. In this paper, 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand was developed. In order to fabricate a 3-axis finger force sensor, the sensing elements were modeled using parallel plate beams, and the theoretical analysis was performed to determine the size of sensing elements, then the 3-axis finger force sensor was fabricated. Also, the characteristic test of the developed 3-axis finger force sensor was performed.

Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object (미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.