한국정보과학회:학술대회논문집 (Proceedings of the Korean Information Science Society Conference)
- 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
- /
- Pages.286-288
- /
- 2006
- /
- 1598-5164(pISSN)
동적 베이지안 네트워크를 이용한 컨텍스트 기반 장소 및 물체 인식
Context based Place and Object Recognition using Dynamic Bayesian Network
- Im Seung-Bin (Dept. of Computer Science, Yonsei University) ;
- Cho Sung-Bae (Dept. of Computer Science, Yonsei University)
- 발행 : 2006.06.01
초록
영상 이해는 컴퓨터 비전의 가장 높은 수준의 처리 기법이다. 영상을 이해하기 위해서는 위치 정보, 물체 존재정보와 같은 기본 컨텍스트들을 추출하는 것이 중요하다. 그러나 실내 환경의 영상 정보는 카메라의 흔들림이나 각도, 빛의 상태에 따라 불확실해지기 때문에 이러한 불확실함에 강인한 영상 인식 기법이 필요하다. 동적 베이지안 네트워크(DBN)는 이러한 불확실한 정보의 처리에 강인하며 장소와 물체의 관계등 고수준의 컨텍스트를 모델링하는데 좋은 성능을 보이는 확률 모델이다. 또한 DBN은 이전 상태를 추론에 활용할 수 있으므로 장소 인식과 같은 컨텍스트의 추출에 좋다. 본 연구에서는 불확실한 실내 환경 영상으로부터 영상 전처리를 통해 특징값을 추출하고, 회전이나 크기 변화에 강인한 물체인식기법인 크기불변 특징 변환기법(SIFT)을 이용하여 물체 존재정보를 추출하여 고수준 컨텍스트가 모델링된 DBN 추론으로 장소 및 물체를 인식하는 방법을 제안한다. 실제 대학 실내 환경에서의 실험으로 DBN을 이용한 영상 인식기법이 좋은 성능을 보임을 확인할 수 있었다.
키워드