An Optimization Approach to Data Clustering

  • Published : 2005.05.13

Abstract

Scalability of clustering algorithms is critical issues facing the data mining community. This is particularly true for computationally intense tasks such as data clustering. Random sampling of instances is one possible means of achieving scalability but a pervasive problem with this approach is how to deal with the noise that this introduces in the evaluation of the learning algorithm. This paper develops a new optimization based clustering approach using an algorithms specifically designed for noisy performance. Numerical results illustrate that with this algorithm substantial benefits can be achieved in terms of computational time without sacrificing solution quality.

Keywords