${\ell}^1/{\ell}^2$ norm IRLS 방법을 사용한 강인한 탄성파자료역산

Robust inversion of seismic data using ${\ell}^1/{\ell}^2$ norm IRLS method

  • 지준 (한성대학교 정보시스템공학과)
  • Ji Jun (Dept, of Information System Eng., Hansung University)
  • 발행 : 2005.05.01

초록

탄성파 역산에 있어서 최소자승(${\ell}^2-norm$)해는 큰 오차에 매우 민감하게 반응하는 경향이 있다. 이에 반해서 ${\ell}^p-norm$ ($1{\le}p<2$)을 최소화하는 해는 잡음에 강인한 해를 보이나 보통은 좀 더 많은 계산이 요구된다. 반복적가중의 최소자승법(Iteratively reweighted least squares [IRLS] method)은 이러한 ${\ell}^p-norm$ 문제의 근사해를 효율적으로 구할 수 있도록 해준다. 본 논문에서는 작은 크기의 잔여분은 ${\ell}^2-norm$으로 큰 크기의 잔여분은 ${\ell}^2-norm$으로 적용되는 하이브리드 ${\ell}^1/{\ell}^2$최소화를 IRLS 방법에 쉽게 적용하는 기법을 소개한다. 모의 자료와 실제 현장자료에의 적용결과 큰 잡음이 포함된 경우 최소자승해보다 하이브리드 방법의 경우에 개선된 결과를 보임을 확인할 수 있었다.

Least squares (${\ell}^2-norm$) solutions of seismic inversion tend to be very sensitive to data points with large errors. The ${\ell}^p-norm$ minimization for $1{\le}p<2$ gives more robust solutions, but usually with higher computational cost. Iteratively reweighted least squares (IRLS) gives efficient approximate solutions of these ${\ell}^p-norm$ problems. I propose a simple way to implement the IRLS method for a hybrid ${\ell}^1/{\ell}^2$ minimization problem that behaves as ${\ell}^2$ fit for small residual and ${\ell}^1$ fit for large residuals. Synthetic and a field-data examples demonstrates the improvement of the hybrid method over least squares when there are outliers in the data.

키워드