The pattern cognition and classification used neural network

  • Published : 2004.07.14

Abstract

This paper classify using Adaptive Resonance Theory 1(ART1) as a vigilance parameter of pattern clustering algorithm. Inherent characteristics of the model are analyzed. In particular the vigilance parameter $\rho$ and its role in classification of patterns is examined. Our estimates show that the vigilance parameter as designed originally does not necessarily increase the number of categories with its value but can decrease also. This is against the claim of solving the stability-plasticity dilemma. However, we have proposed a modified vigilance parameter setting criterion which takes into account the problem of subset and superset patterns and stably categorizes arbitrarily many input patterns in one list presentation when the vigilance parameter is closer to one. And this paper goal is the input pattern cognition and classification using neural network.

Keywords