제어로봇시스템학회:학술대회논문집
- 제어로봇시스템학회 2003년도 ICCAS
- /
- Pages.2331-2334
- /
- 2003
Unscented Filtering Approach to Magnetometer-Only Orbit Determination
- Cheon, Yee-Jin (System Engineering and Integration Department, Space Division, Korea Aerospace Research Institute)
- 발행 : 2003.10.22
초록
The basic difference between the EKF(Extended Kalman Filter) and UKF(Unscented Kalman Filter) stems from the manner in which Gaussian random variables(GRV) are represented for propagating through system dynamics. In the EKF, the state distribution is approximated by a GRV, which is then propagated analytically through the first-order linearization of the nonlinear system. This can possibly introduce large errors in the true posterior mean and covariance of the transformed GRV, which may lead to sub-optimal performance and sometimes divergence of the filter. However, the UKF addresses this problem by using a deterministic sampling approach. The state distribution is also approximated by a GRV, but is now represented using a minimal set of carefully chosen sample points. These sample points completely capture the true mean and covariance of the GRV, and UKF captures the posterior mean and covariance accurately up to the 2nd order(Taylor series expansion) for any nonlinearity. This paper utilizes the UKF to determine spacecraft orbit when only magnetometer is available. Several catastrophic failures of spacecraft in orbit have been attributed to failures of the spacecraft mission. Recently studies on contingency-major sensor failure cases- have been performed. For mission success, contingency design or plan should be implemented in case of a major sensor failure. Therefore the algorithm presented in this paper can be used for a spacecraft without GPS or contingency design in case of GPS failure.