Proceedings of the Korean Information Science Society Conference (한국정보과학회:학술대회논문집)
- 2002.10d
- /
- Pages.331-333
- /
- 2002
- /
- 1598-5164(pISSN)
A New Collaborative Filtering Using Associative Relation Clustering
연관 관계 군집에 의한 협력적 여과 방법
Abstract
협력적 여과 방법은 사용자의 평가 데이터를 이용하므로, 항상 초기 평가 문제(First-Rating Problem)와 희박성 문제(Sparsity Problem)가 발생한다. 최근 이러한 문제를 해결하기 위해 많은 연구가 진행되고 있는 데, 본 논문에서는 연관 규칙을 이용하여 이러한 문제를 해결하고자 한다. 사용자의 평가 데이터를 이용하여 아이템간의 연관성을 산출하고, 연관성이 높은 아이템끼리 군집한다. 사용자와 군집간에 피어슨 상관 계수(Pearson Correlation Coefficient)를 이용하여 가중치를 구하고, 이것으로 선호도를 예측한다. 이러한 방법을 기존의 협력적 여과 방법과 함께 속성에 의한 군집 방식과 비교 평가하였다. 또한, 효율적인 군집을 위한 Split Cluster Method를 제안하고, 기존의 트리 방식의 군집과 비교 평가하였다.
Keywords