Proceedings of the Korean Information Science Society Conference (한국정보과학회:학술대회논문집)
- 2002.10d
- /
- Pages.328-330
- /
- 2002
- /
- 1598-5164(pISSN)
Stock Price Prediction Using Backpropagation Neural Network
역전파 신경망을 이용한 주가 예측
Abstract
본 논문에서는 역전파 신경망(Backpropagation Neural Network)을 시계열 데이터인 주가 데이터를 이용한 주가 예측의 정확도를 향상시키기 위한 학습 방법으로 적용하였다. 실제 증권거래소의 종목 데이터에서 비교적 등락폭이 안정적인 각 산업분야별 5개 기업의 5일 이동평균선 데이터 240개를 훈련 데이터로, 20개는 테스트 데이터로 이용하였다. 선정된 입력 데이터를 은닉층의 개수와 은닉 노드의 개수 등을 달리 하면서 10,000번의 훈련을 통해서 실험 하였으며, 그 결과 1개의 은닉층을 사용한 네트워크1은 20개의 테스트 데이터 사이의 19개의 신호 중 14개를 예측하였고, 2개의 은닉층을 사용한 네트워크 2는 16개를 예측하였다. 시험 결과를 통해서 보듯이 은닉층을 2개 사용하였을 때 보다 좋은 실험 결과를 얻을 수 있었으며, 역전파 신경망 모델이 주가 예측에 적합하다는 것이 증명되었다.
Keywords