Adaptive Noise Smoothing Algorithm Based on Nonstationary Correlation Assumption

영상의 비정적 상관관계 가정에 근거한 적응적 잡음제거 알고리즘

  • 박성철 (연세대학교 전기전자공학과) ;
  • 강문기 (연세대학교 전기전자공학과)
  • Published : 2001.11.01

Abstract

영상에 포함된 잡음은 화질 및 영상의 압축효율을 저하시킨다. 최근 들어, 영상의 에지 성분을 효율적으로 고려하면서 잡음을 제거하기 위하여 다양한 비정적(nonstationary) 영상 모델에 근거한 잡음제거 알고리즘이 제안되어 왔다. 하지만, 기존의 비정적 영상모델에서는 연산량의 부담을 덜기 위하여 각 화소들 사이에 상관관계(correlation)가 없다는 가정을 하고 있어 영상의 미세한 정보들이 필터링에 의하여 훼손된다. 본 논문에서는 영상의 비정적 상관관계를 고려한 적응적 잡음제거 알고리즘을 제시한다. 영상신호는 비정적 평균을 가진다고 가정되며, 또한 각기 다른 정적(stationary) 상관관계를 가지는 부분 영상으로 분리된다고 가정된다. 제안된 영상 모델에서의 공분산(co-variance) 행렬의 특수한 구조를 이용하여 계산적으로 효율적인 FFT에 기반한 선형 minimum mean square error 필터를 유도한다. 제안된 영상 모델의 정당성 및 알고리즘의 효율성을 제시한다.

Keywords