Relationships between Biodegradation and Sorption of Phenanthrene in Slurry Bioremediation

  • ;
  • ;
  • Bruce E. Rittmann (Department of Civil Engineering, Northwestern University)
  • 우승한 (포항공과대학교 화학공학과/환경공학부) ;
  • 박종문 (포항공과대학교 화학공학과/환경공학부) ;
  • Published : 2000.11.01

Abstract

Bioremediation of hazardous hydrophobic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), is a major environmental concern due to their toxic and carcinogenic properties. Due to their hydrophobicity, the hydrophobic organic compounds are mainly associated with the soil organic matter or nonaqueous-phase liquids. A major question concerns the relationships between biodegradation and sorption. This work develops and utilizes a non- steady state model for evaluating the interactions between sorption and biodegradation of phenanthrene, a 3-ring PAH compound, in soil-slurry systems. The model includes sorption/desorption of a target compound, its utilization by microorganisms as a primary substrate existing in the dissolved phase and/or the sorbed phase in biomass and soil, oxygen transfer, and oxygen utilization as an electron acceptor. Biodegradation tests with phenanthrene were conducted in liquid and soil-slurry systems. The soil-slurry tests were performed with very different mass transfer rate: fast mass transfer in a flask test at 150 rpm, and slow mass transfer in a roller-bottle test at 2 rpm. In the slurry tests, phenanthrene was degraded more rapidly than in liquid tests, but with a similar rate in both slurry systems. Modeling analyses with several hypotheses indicate that a model without biodegradation of compound sorbed to the soil was not able to account for the rapid degradation of phenanthrene, particularly in the roller bottle slurry test. Reduced mass-transfer resistance to bacteria attached to the soil is the most likely phenomenon accounting for rapid sorbed-phase biodegradation.

Keywords