DOI QR코드

DOI QR Code

Anti-oxidant and Anti-aging Activities of Sericinjam Gland Hydrolysate Extract in Human Dermal Fibroblasts

사람 섬유아세포에서 세리신잠 실샘가수분해물(Sericinjam Gland Hydrolysate)의 항산화 및 항노화 효과

  • Cheon, Yuri (Department of Applied Bioscience, CHA university) ;
  • Hwang, Jung Wook (Department of Applied Bioscience, CHA university) ;
  • Lee, Heui Sam (Sericultural & Apicultural Materials Division, National Academy of Agricultural Science, RDA) ;
  • Yun, Seiyoung (Department of Pharmaceutical Cosmetics, Gwangju Women's University) ;
  • Choi, Yong-Soo (Department of Applied Bioscience, CHA university) ;
  • Kang, Sangjin (Department of Applied Bioscience, CHA university)
  • 천유리 (차의과학대학교 바이오산업응용학과) ;
  • 황정욱 (차의과학대학교 바이오산업응용학과) ;
  • 이희삼 (농촌진흥청 국립농업과학원 잠사양봉소재과) ;
  • 윤세영 (광주여자대학교 제약향장학과) ;
  • 최용수 (차의과학대학교 바이오산업응용학과) ;
  • 강상진 (차의과학대학교 바이오산업응용학과)
  • Received : 2012.09.07
  • Accepted : 2012.10.30
  • Published : 2013.03.31

Abstract

We studied the anti-oxidant and anti-aging activities of Sericinjam Gland Hydrolysate (SJGH) in the human dermal fibroblasts. SJGH effectively defended cell death and ROS generation under high H2O2 in human dermal fibroblasts. Moreover SJGH reduced the expression of SA-${\beta}$-Gal and MMP-1 under low concentration of $H_2O_2$ whereas biosynthesis of procollagen-I was increased. This results demonstrate the anti-oxidant and anti-aging activities of SJGH. SJGH could be a good candidate for anti-aging cosmetics ingredient.

본 논문에서는 세리신잠 실샘 가수분해물(Sericinjam Gland Hydrolysate: SJGH)을 이용하여 진피 섬유아세포에서 항산화 및 항노화 연구를 진행하였다. SJGH는 사람 섬유아세포에서 고농도의 과산화수소에 의한 세포사멸과 세포 내 산화 증가를 효과적으로 방어하였다. 또한 SJGH는 저농도의 과산화수소에 의한 섬유아세포의 SA-${\beta}$-Gal 발현과 MMP-1의 발현 증가를 억제하였고, 반대로 프로콜라겐 I의 생합성은 증가시켰다. 이러한 결과를 통해 SJGH의 항산화 및 항노화 효과가 우수함을 확인하였으며, SJGH가 항노화 화장품의 우수한 소재가 될 수 있음을 보여준다.

Keywords

References

  1. M. D. West, The cellular and molecular biology of skin aging, Arch Dermatol., 130(1), 87 (1994). https://doi.org/10.1001/archderm.1994.01690010091014
  2. S. Mukherjee, A. Date, V. Patravale, H. C. Korting, A. Roeder, and G. Weindl, Retinoids in the treatment of skin aging: An overview of clinical efficacy and safety, Clin Interv Aging, 1(4), 327 (2006). https://doi.org/10.2147/ciia.2006.1.4.327
  3. S. Saffarian, I. E. Collier, B. L. Marmer, E. L Elson, and G. Goldberg, Interstitial collagenase is a brownian ratchet driven by proteolysis of collagen, Science, 306(5693), 108 (2004). https://doi.org/10.1126/science.1099179
  4. L. Rittie and G. J. Fisher, UV-light-induced signal cascades and skin aging, Ageing Res Rev., 1(4), 705 (2002). https://doi.org/10.1016/S1568-1637(02)00024-7
  5. H. Fujimori, M. Hisama, H. S. hibayama, and M. Iwaki, Protecting effect of phytoncide solution, on normal human dermal fibroblasts against reactive oxygen species, J. Oleo. Sci., 58(8), 429 (2009). https://doi.org/10.5650/jos.58.429
  6. T. Polte and R. M. Tyrrell, Involvement of lipid peroxidation and organic peroxides in UVA-induced matrix metalloproteinase-1 expression, Free Radic Biol. Med., 36(12), 1566 (2004). https://doi.org/10.1016/j.freeradbiomed.2004.04.003
  7. H. S. Talwar, C. E. Griffiths, G. J. Fisher, T. A. Hamilton, and J. J. Voorhees, Reduced type I and type III procollagens in photodamaged adult human skin, J. Invest. Dermatol., 105(2), 285 (1995). https://doi.org/10.1111/1523-1747.ep12318471
  8. J. C. Fantone and P. A. Ward, Role of oxygenderived free radicals and metabolites in leukocyte-dependent inflammatory reactions, Am. J. Pathol., 107(3), 395 (1982).
  9. D. Harman, Aging : A theory based on free radical and radiation chemistry, J. Gerontol., 11(3), 298 (1956). https://doi.org/10.1093/geronj/11.3.298
  10. C. I. Nobel, M. Kimland, B. Lind, S. Orrenius, and A. F. Slater, Dithiocarbamates induce apoptosis in thymocytes by raising the intracellular level of redoxactive copper, J. Biol. Chem., 270(44), 26202 (1995). https://doi.org/10.1074/jbc.270.44.26202
  11. K. Schindowski, S. Leutner, S. Kressmann, A. Eckert, and W. E. Muller, Age-related increase of oxidative stress-induced apoptosis in mice prevention by ginkgo biloba extract (EGb761), J. Neural. Transm., 108(8-9), 969 (2001). https://doi.org/10.1007/s007020170016
  12. X. Zhang, M. Tsukada, H. Morikawa, K. Aojima, G. Zhang, and M. Miura, Production of silk sericin/silk fibroin blend nanofibers. Nanoscale Res. Lett., 6, 510 (2011). https://doi.org/10.1186/1556-276X-6-510
  13. R. Dash, C. Acharya C, P. C. Bindu, and S. C. Kundu, Antioxidant potential of Silk protein sericin against hydrogen peroxide-induced stress in skin fibroblast. BMB Rep., 41(3), 236 (2008). https://doi.org/10.5483/BMBRep.2008.41.3.236
  14. Y. Q. Zhang, Applications of natural silk protein sericin in biomaterials, Biotechnol. Adv., 20(2), 91 (2002). https://doi.org/10.1016/S0734-9750(02)00003-4
  15. A. Manosroi, K. Boonpisuttinant, S. Winitchai, W. Manosroi, and J. Manosroi, Free radical scavenging and tyrosinase inhibition activity of oils and sericin extracted from thai native silkworms (bombyx mori), Pharm. Biol., 48(8), 855 (2010). https://doi.org/10.3109/13880200903300212
  16. S. Nayak, S. Talukdar, and S. C. Kundu, Potential of 2D cross linked sericin membranes with improved bio stability for skin tissue engineering, Cell Tissue Res., 347(3), 783 (2012). https://doi.org/10.1007/s00441-011-1269-4
  17. P. D. Kang, B. H. Sohn, S. U. Lee, M. J. Kim, I. Y. Jung, Y. S. Kim, Y. D. Kim, and H. S. Lee, Breeding of a New Silkworm Variety, Kumhwangjam, with a Sex-Limited Cocoon Color for Spring Rearing Season, Int. J. Indust. Entomol., 9(1), 89 (2004).
  18. H. J. lim and D. Y. Yoo, Effect of danchisoyo-san on UVB-induced cell damage and gene expression in dermal fibroblast, J. Orient Cynecol., 24(2), 013 (2011).
  19. K. A. Kang, S. w. Chae, and R. Zhang, Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation, J. Cell Biochem., 97, 609 (2006). https://doi.org/10.1002/jcb.20668
  20. I. P. Trougakos, A. Saridak, G. Panayotou, and E. S. Gonos, Identificaton of differentially expressed proteins in senescent human embryonic fibro-blast, Mech Ageing Dev., 127(1), 88 (2006). https://doi.org/10.1016/j.mad.2005.08.009
  21. Y. Park, J. S. Park, K. A. Cho, D. I. Kim, Y. G. Ko, and J. S. Seo, up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells, J. Biol. Chem., 275(27), 20847 (2000). https://doi.org/10.1074/jbc.M908162199
  22. G. P. Dimri, X. Lee, X. Basile, M. Acosta, G. Scott, and G. A. Roskelley, A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc. Natl. Acad. Sci., 92(20), 9363 (1995). https://doi.org/10.1073/pnas.92.20.9363
  23. G. J. Fisher, T. Quan, T. Purohit, Y. Shao, M. K. Cho, J. Varani, S. Kang, and J. J. Voorhees, Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Am, J. Pathol., 174(1), 101 (2009). https://doi.org/10.2353/ajpath.2009.080599
  24. T. Naoko, T. N. Kentaro, I. Seiko, T. Azusa, and A. Mitsugu, Cinnamon Extract Promotes Type I Collagen Biosynthesis via Activation of IGF-I Signaling in Human Dermal Fibroblasts, J. Agric. Food Chem., 60(5), 1193 (2012). https://doi.org/10.1021/jf2043357
  25. H. J. Shin, S. N. Kim, J. K. Kim, B. G. Lee, and I. S. Chang, Effect of green tea catechins on the expression and activity of mmps and type 1 procollagen synthesis in human dermal fibroblasts, Soc. Cosmet. Scientists Korea, 33(2), 117 (2006).

Cited by

  1. Whitening Effect of Storage Protein 2 from Silkworm Hemolymph vol.05, pp.09, 2014, https://doi.org/10.4236/abb.2014.59089