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ALMOST MULTIPLICATIVE SETS

HYUNG TAE BAEK AND JUNG WOOK LIM∗

Abstract. Let R be a commutative ring with identity and let S be a
nonempty subset of R. We define S to be an almost multiplicative subset
of R if for each a, b ∈ S, there exist integers m,n ≥ 1 such that ambn ∈ S.
In this article, we study some utilization of almost multiplicative subsets.
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1. Introduction

Let R be a commutative ring with identity and let S be a nonempty subset of
R. Recall that S is a multiplicative subset of R if for each a, b ∈ S, ab ∈ S; and a
multiplicative subset S of R is saturated if whenever a, b ∈ R with ab ∈ S, both
a and b belong to S. In commutative algebra, multiplicative sets have been very
useful to study many algebraic properties. Especially, multiplicative subsets are
related to prime ideals. For example, multiplicative subsets are used to construct
prime ideals and to express radical ideals by the intersection of prime ideals. The
simplest fact is that an ideal P of R is a prime ideal of R if and only if R \ P is
a multiplicative subset of R. Motivated by this result, Krull showed that if P is
an ideal of R maximal with respect to the exclusion of a multiplicative subset of
R, then P is a prime ideal of R [6, Theorem 1]. Also, multiplicative subsets are
very important tools to construct quotient rings. It is well known that if S is a
multiplicative subset of R, then RS becomes a commutative ring with identity
which shares ideal structures with R. Another application of a multiplicative
subset is the study of S-Noetherian rings as a generalization of Noetherian rings.

The purpose of this article is to define a concept of almost multiplicative
subsets and to study some applications. (The definition of almost multiplicative
subsets will be introduced in the next section.) While our new notion is a
weaker version than multiplicative subsets, it plays similar roles as multiplicative
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subsets. In Section 2, we recover the Krull’s result by using almost multiplicative
subsets. We also construct quotient rings and compare ideal structures with the
base ring. Finally, we study S-Noetherian rings in terms of almost multiplicative
subset S.

2. Main results

Let R be a commutative ring with identity and let S be a nonempty subset of
R. We say that S is an almost multiplicative subset of R if for each a, b ∈ S, there
exist integers m,n ≥ 1 such that ambn ∈ S. If we can always take m = n = 1,
then the concept of almost multiplicative subsets is precisely the same as that
of multiplicative subsets. Also, it is clear that every multiplicative subset of
R is an almost multiplicative subset of R but not vice versa. For example, if
S = {22n+1 |n ∈ N0}, then S is an almost multiplicative subset of Z which is
not a multiplicative subset of Z, where N0 is the set of nonnegative integers and
Z is the ring of integers.

Our first result in this paper is a slight generalization of [6, Theorem 1].

Theorem 2.1. Let R be a commutative ring with identity and let S be an
almost multiplicative subset of R. If P is an ideal of R maximal with respect to
the exclusion of S, then P is a prime ideal of R.

Proof. Suppose to the contrary that P is not a prime ideal of R. Then there
exist a, b ∈ R \ P such that ab ∈ P . Note that P + (a) and P + (b) are ideals
of R properly containing P ; so by the maximality of P , (P + (a)) ∩ S 6= ∅ and
(P + (b)) ∩ S 6= ∅. Let s1 ∈ (P + (a)) ∩ S and s2 ∈ (P + (b)) ∩ S. Then
s1 = p1 + ax and s2 = p2 + by for some p1, p2 ∈ P and x, y ∈ R. Since S is
an almost multiplicative subset of R, there exist positive integers m and n such
that sm1 sn2 ∈ S. Also, we have

sm1 s
n
2 = (p1 + ax)m(p2 + by)n

=

(
(ax)m +

m∑
i=1

pi1(ax)
m−i

)(by)n +

n∑
j=1

pj2(by)
n−j


= ambnxmyn +

n∑
j=1

(ax)mpj2(by)
n−j

+

m∑
i=1

(by)npi1(ax)
m−i +

m∑
i=1

n∑
j=1

pi1p
j
2(ax)

m−i(by)n−j

∈ P.
Hence P ∩S 6= ∅, which is a contradiction to the choice of P . Thus P is a prime
ideal of R. �

Let R be a commutative ring with identity. For an almost multiplicative
subset S of R, 〈S〉 denotes the smallest multiplicative subset of R containing S.
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Remark 2.1. Let R be a commutative ring with identity and let S be an almost
multiplicative subset of R.

(1) Let P be a prime ideal of R which is maximal with respect to the exclusion
of S. If P ∩〈S〉 6= ∅, then there exists an element a ∈ P ∩〈S〉. Write a = s1 · · · sm
for some s1, . . . , sm ∈ S. Since P is a prime ideal of R, si ∈ P for some
i ∈ {1, . . . ,m}. Therefore P ∩ S 6= ∅. This is absurd. Hence P ∩ 〈S〉 = ∅. Also,
let Q be a prime ideal of R such that P ⊆ Q and Q ∩ 〈S〉 = ∅. Since S ⊆ 〈S〉,
Q ∩ S = ∅; so P = Q by the maximality of P . Thus P is a prime ideal of R
which is maximal with respect to the exclusion of 〈S〉.

(2) Let P be a prime ideal of R which is maximal with respect to the exclusion
of 〈S〉. Then a similar argument as in (1) shows that P is a prime ideal of R
which is maximal with respect to the exclusion of S.

Let R be a commutative ring with identity and let S be an almost multiplica-
tive subset of R. We say that S is saturated if whenever a, b ∈ R with ab ∈ S,
both a and b belong to S; and S is almost saturated if whenever a, b ∈ R with
ab ∈ S, there exist positive integers m and n (depending on a and b) such that
am ∈ S and bn ∈ S. It is clear that every saturated almost multiplicative set is
almost saturated. However, the converse is not generally true. For example, if
R = Z2×Z8 and S = {(1, 0), (1, 1), (1, 2)}, then S is an almost saturated almost
multiplicative subset of R which is not saturated. Also, it is easy to check that
{22n+1 |n ∈ N0} is an almost multiplicative subset of Z which is not almost
saturated.
Remark 2.2. Let R be a commutative ring with identity and let S be an almost
multiplicative subset of R.

(1) It is easy to see that if S is saturated, then S is a (saturated) multiplicative
subset of R. Hence S is a saturated almost multiplicative subset of R if and only
if the complement of S in R is a union of prime ideals of R [6, Theorem 2].

(2) The condition ‘saturated multiplicative’ in [6, Theorem 2] cannot be re-
placed by ‘almost saturated almost multiplicative’. For instance, let R = Z2×Z8

and S = {(1, 0), (1, 1), (1, 2)}. Then S is an almost saturated almost multiplica-
tive subset of R. If R \ S is a union of prime ideals of R, then there exists a
prime ideal P of R such that P ∩ S = ∅ and (1, 4) ∈ P ; so (1, 2) ∈ P ∩ S. This
is a contradiction. Hence the complement of S in R cannot be a union of prime
ideals of R.
Lemma 2.2. Let R be a commutative ring with identity and let S be an almost
multiplicative subset of R. Then the relation ∼ defined on R× S by

(r1, s1) ∼ (r2, s2) if and only if t(r1s2 − r2s1) = 0 for some t ∈ S
is an equivalence relation.
Proof. Let (r1, s1), (r2, s2), (r3, s3) ∈ R × S. Then it is obvious that (r1, s1) ∼
(r1, s1). Also, it is easy to see that if (r1, s1) ∼ (r2, s2), then (r2, s2) ∼ (r1, s1).
Suppose that (r1, s1) ∼ (r2, s2) and (r2, s2) ∼ (r3, s3). Then there exist t1, t2 ∈ S
such that
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t1(r1s2 − r2s1) = 0 and t2(r2s3 − r3s2) = 0;

so by a routine calculation, t1t2s2(r1s3 − r3s1) = 0. Since S is an almost multi-
plicative subset of R, there exist positive integers ℓ,m, n such that tℓ1tm2 sn2 ∈ S.
Therefore tℓ1tm2 sn2 (r1s3 − r3s1) = 0. Hence (r1, s1) ∼ (r3, s3). Thus the relation
∼ is an equivalence relation on R× S. �

Let R be a commutative ring with identity and let S be an almost multiplica-
tive subset of R. Then the equivalence relation ∼ defined in Lemma 2.2 gives
the partition of R × S into equivalence classes. For an element (r, s) ∈ R × S,
r
s denotes the equivalence class of (r, s) under ∼; and RS stands for the set of
equivalence classes in R× S under ∼.

Remark 2.3. Let R be a commutative ring with identity and let S be an almost
multiplicative subset of R. If r

s ∈ RS , then for any t ∈ R with st ∈ S, r
s = rt

st .

Let R be a commutative ring with identity and let S be an almost multi-
plicative subset of R. In order to make the set RS be a ring, we need to define
addition and multiplication on RS .

Lemma 2.3. Let R be a commutative ring with identity and let S be an almost
multiplicative subset of R. Define addition and multiplication on RS by

r1
s1

+ r2
s2

=
r1s

m−1
1 sn2 +r2s

m
1 sn−1

2

sm1 sn2
and r1

s1
r2
s2

=
r1r2s

m−1
1 sn−1

2

sm1 sn2

for all r1
s1
, r2s2 ∈ RS, where m and n are positive integers satisfying sm1 sn2 ∈ S.

Then + and · are binary operations on RS.

Proof. Suppose that a1

s1
= b1

t1
and a2

s2
= b2

t2
in RS . Then there exist u1, u2 ∈ S

such that

u1(a1t1 − b1s1) = 0 and u2(a2t2 − b2s2) = 0.

Let ℓ1 and ℓ2 be positive integers such that uℓ11 u
ℓ2
2 ∈ S. Then we have

uℓ11 u
ℓ2
2 (a1t1 − b1s1) = 0 and uℓ11 u

ℓ2
2 (a2t2 − b2s2) = 0.

Let m1,m2, n1, n2 be positive integers satisfying sm1
1 sm2

2 , tn1
1 tn2

2 ∈ S. Then we
have

a1

s1
+ a2

s2
=

a1s
m1−1
1 s

m2
2 +a2s

m1
1 s

m2−1
2

s
m1
1 s

m2
2

and b1
t1

+ b2
t2

=
b1t

n1−1
1 t

n2
2 +b2t

n1
1 t

n2−1
2

t
n1
1 t

n2
2

.

Let k1 = sm1−1
1 sm2

2 tn1−1
1 tn2

2 and k2 = sm1
1 sm2−1

2 tn1
1 tn2−1

2 . Then we have

uℓ11 u
ℓ2
2 (k1(a1t1 − b1s1) + k2(a2t2 − b2s2)) = 0.

Hence a1

s1
+ a2

s2
= b1

t1
+ b2

t2
. Note that

a1

s1
a2

s2
=

a1a2s
m1−1
1 s

m2−1
2

s
m1
1 s

m2
2

and b1
t1

b2
t2

=
b1b2t

n1−1
1 t

n2−1
2

t
n1
1 t

n2
2

.

Since uℓ11 u
ℓ2
2 (a1t1 − b1s1) = 0 and uℓ11 u

ℓ2
2 (a2t2 − b2s2) = 0, we have
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uℓ11 u
ℓ2
2 (a1a2t1t2 − b1b2s1s2) = 0.

Let k = sm1−1
1 sm2−1

2 tn1−1
1 tn2−1

2 . Then we have

uℓ11 u
ℓ2
2 (k(a1a2t1t2 − b1b2s1s2)) = 0.

Hence a1

s1
a2

s2
= b1

t1
b2
t2
. Thus + and · are binary operations on RS . �

Proposition 2.4. Let R be a commutative ring with identity and let S be an
almost multiplicative subset of R. Then RS is a commutative ring with identity
under binary operations defined in Lemma 2.3.

Proof. It is routine to check that RS is a commutative ring with identity. �

Theorem 2.5. Let R be a commutative ring with identity and let S be an almost
multiplicative subset of R. Then RS is isomorphic to R⟨S⟩.

Proof. It is easy to show that the map ϕ : RS → R⟨S⟩ given by r
s 7→

r
s is a ring

isomorphism. �

Let R be a commutative ring with identity and let S be an almost multiplica-
tive subset of R. For an ideal I of R, let IRS = { rs | r ∈ I and s ∈ S}. Then it
is easy to see that IRS is an ideal of RS . For an element s ∈ S, let ψs : R→ RS

be the map defined by r 7→ rs
s . Then it is routine to check that ψs is a ring

homomorphism and ψs = ψt for all s, t ∈ S. From now on, ψS represents the
map ψs for a fixed s ∈ S.

Corollary 2.6. Let R be a commutative ring with identity and let S be an almost
multiplicative subset of R. Then the following assertions hold.

(1) If A is an ideal of RS, then A = IRS for some ideal I of R.
(2) If P is a prime ideal of R with P ∩ S = ∅, then PRS is a prime ideal of

RS.
(3) If Q is a prime ideal of RS, then Q = PRS for some prime ideal P of

R with P ∩ S = ∅ and ψ−1
S (PRS) = P .

(4) There is a one-to-one order-preserving correspondence between the set of
prime ideals of R which are disjoint from S and the set of prime ideals
of RS, given by P 7→ PRS.

Proof. Let ϕ : RS → R⟨S⟩ be the isomorphism given by ϕ( rs ) =
r
s for all r

s ∈ RS .
(1) Let A be an ideal of RS . Then ϕ(A) is an ideal of R⟨S⟩; so ϕ(A) = IR⟨S⟩

for some ideal I of R [5, Chapter III, Lemma 4.9(ii)]. Hence A = ϕ−1(IR⟨S⟩).
We now claim that IRS = ϕ−1(IR⟨S⟩). Note that ϕ(IRS) ⊆ IR⟨S⟩; so IRS ⊆
ϕ−1(IR⟨S⟩). For the reverse containment, let a

s ∈ ϕ
−1(IR⟨S⟩). Then ϕ(as ) =

i
t

for some i
t ∈ IR⟨S⟩. Since S is an almost multiplicative subset of R, we can

take an element x ∈ R such that tx ∈ S; so a
s = ix

tx in R⟨S⟩. Therefore there
exists an element u ∈ 〈S〉 such that u(atx − ixs) = 0. Since S is an almost
multiplicative subset of R, there exists an element y ∈ R such that uy ∈ S; so
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uy(atx − ixs) = 0. Hence a
s = ix

tx in RS , which implies that a
s ∈ IRS . Thus

ϕ−1(IR⟨S⟩) ⊆ IRS . Consequently, A = IRS .
(2) Let P be a prime ideal of R with P ∩ S = ∅. Then P ∩ 〈S〉 = ∅ by an

argument in Remark 2.1(1); so PR⟨S⟩ is a prime ideal of R⟨S⟩ [5, Chapter III,
Lemma 4.9(iii)]. Note that ϕ−1(PR⟨S⟩) = PRS by the proof of (1). Thus PRS

is a prime ideal of RS .
(3) Let Q be a prime ideal of RS . Then ϕ(Q) is a prime ideal of R⟨S⟩; so

ϕ(Q) = PR⟨S⟩ for some prime ideal P of R with P ∩ 〈S〉 = ∅ [5, Chapter III,
Theorem 4.10]. Hence by the proof of (1), Q = ϕ−1(PR⟨S⟩) = PRS . Obviously,
P ∩ S = ∅ because S ⊆ 〈S〉.

Note that ϕ ◦ ψS : R → R⟨S⟩ is a ring homomorphism and by the proof of
(1), ϕ(PRS) = PR⟨S⟩; so ψ−1

S (PRS) = (ϕ ◦ ψS)
−1(PR⟨S⟩) = P [5, Chapter III,

Lemma 4.9(iii)].
(4) The result follows directly from (2) and (3). �

Let R be a commutative ring with identity and let S be an almost multiplica-
tive subset of R. We say that an ideal I of R is S-finite if there exist an element
s ∈ S and a finitely generated ideal J of R such that sI ⊆ J ⊆ I; and R is
an S-Noetherian ring if every ideal of R is S-finite. These concepts generalize
those of S-finiteness and S-Noetherian rings for multiplicative sets S. For more
on S-finiteness and S-Noetherian rings for multiplicative sets, the readers can
refer to [3, 7, 10, 11, 12, 13, 14].

Proposition 2.7. Let R be a commutative ring with identity, S an almost
multiplicative subset of R and I an ideal of R. Then I is S-finite if and only if
I is 〈S〉-finite.

Proof. The “only if” part is clear, because S ⊆ 〈S〉. For the converse, suppose
that I is an 〈S〉-finite ideal of R. Then there exist an element t ∈ 〈S〉 and a
finitely generated ideal J of R such that tI ⊆ J ⊆ I. Note that t = s1 · · · sm for
some s1, . . . , sm ∈ S. Since S is an almost multiplicative subset of R, there exist
positive integers n1, . . . , nm such that sn1

1 · · · snm
m ∈ S. Thus sn1

1 · · · snm
m I ⊆ J ⊆

I, which means that I is an S-finite ideal of R. �

By Proposition 2.7, we have

Corollary 2.8. Let R be a commutative ring with identity and let S be an almost
multiplicative subset of R. Then R is an S-Noetherian ring if and only if R is
an 〈S〉-Noetherian ring.

Let R be a commutative ring with identity and let S be an (almost) mul-
tiplicative subset of R. We say that S is an anti-Archimedean subset of R if∩

n≥1 s
nR ∩ S 6= ∅ for all s ∈ S.

Proposition 2.9. Let R be a commutative ring with identity and let S be an
almost multiplicative subset of R. Then S is an anti-Archimedean subset of R if
and only if 〈S〉 is an anti-Archimedean subset of R.
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Proof. (⇒) Let t ∈ 〈S〉. Then t = s1 · · · sm for some s1, . . . , sm ∈ S. Since S is
an anti-Archimedean subset of R,

∩
n≥1 s

n
i R ∩ S 6= ∅ for all i ∈ {1, . . . ,m}. For

each i ∈ {1, . . . ,m}, choose any element αi ∈
∩

n≥1 s
n
i R ∩ S. Then α1 · · ·αm ∈

tnR ∩ 〈S〉 for all n ≥ 1. Hence
∩

n≥1 t
nR ∩ 〈S〉 6= ∅. Thus 〈S〉 is an anti-

Archimedean subset of R.
(⇐) Suppose that 〈S〉 is an anti-Archimedean subset of R and let s ∈ S.

Then there exists an element t ∈
∩

n≥1 s
nR ∩ 〈S〉. Write t = s1 · · · sm for some

s1, . . . , sm ∈ S. Since S is an almost multiplicative subset of R, there exist
positive integers n1, . . . , nm such that sn1

1 · · · snm
m ∈ S. Note that sn1

1 · · · snm
m =

tsn1−1
1 · · · snm−1

m ∈
∩

n≥1 s
nR. Hence

∩
n≥1 s

nR ∩ S 6= ∅. Thus S is an anti-
Archimedean subset of R. �

Let R be a commutative ring with identity and let R[X] be the polynomial
ring over R. For an element f ∈ R[X], c(f) denotes the content ideal of f ,
i.e., the ideal of R generated by the coefficients of f . Let U = {f ∈ R[X] | f is
monic} and let N = {f ∈ R[X] | c(f) = R}. Then U is a multiplicative subset of
R[X] and N is a saturated multiplicative subset of R[X]. Also, the quotient ring
R[X]U is called the Serre’s conjecture ring of R and the quotient ring R[X]N
is called the Nagata ring of R. The readers can refer to [2, 8, 9] for the Serre’s
conjecture ring and to [1, 2, 4] for the Nagata ring.

Corollary 2.10. (cf. [11, Theorem 3]) Let R be a commutative ring with identity
and let S be an almost multiplicative subset of R. If S is an anti-Archimedean
subset of R, then the following conditions are equivalent.

(1) R is an S-Noetherian ring.
(2) R[X] is an S-Noetherian ring.
(3) R[X]U is an S-Noetherian ring.
(4) R[X]N is an S-Noetherian ring.

Proof. These equivalences come directly from Corollary 2.8 and Proposition 2.9.
�
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