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ILL-CONDITIONING IN LINEAR REGRESSION MODELS AND

ITS DIAGNOSTICS

Hamid Ghorbani

Abstract. Multicollinearity is a common problem in linear regression models when
two or more regressors are highly correlated, which yields some serious problems for
the ordinary least square estimates of the parameters as well as model validation
and interpretation. In this paper, first the problem of multicollinearity and its
subsequent effects on the linear regression along with some important measures for
detecting multicollinearity is reviewed, then the role of eigenvalues and eigenvectors
in detecting multicollinearity are bolded. At the end a real data set is evaluated
for which the fitted linear regression models is investigated for multicollinearity
diagnostics.

1. Introduction

Regression analysis is a commonly used statistical method in various disciplines,

including engineering, finance, medicine, social sciences, etc., that allows examining

the relationship between a dependent (target) variable and independent (or explana-

tory) variable(s). However, the efficiency of regression analysis highly depends on

correlation structure among predictive variables. Multiple linear regression is the

most common form of regression analysis, where we want to predict the value of de-

pendent variable based on the value of two or more independent variables by fitting

a linear equation to observed data. A basic assumption in multiple linear regres-

sion model is that the matrix of observations on explanatory observations is a full

column rank variable matrix, i.e., the rank of this matrix is same as the number

of explanatory variables. This implies that all the regressors are independent, i.e.,

there is no linear relationship among them [3]. Violation of this assumption leads to

problems referred to as multicollinearity. This phenomenon of collinearity and near-

collinearity was first described by [10]. If within the set of the explanatory variables,
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one or more linear relations exist, it is said that these variables are multicollinear

which causes the existence of the multicollinearity problem in the regression model.

In other words, multicollinearity depends on the sample correlations between the

regressors, not on theoretical population quantities.

The reason why multicollinearity is important is that the coefficient estimates of

the multiple regression may change erratically in response to small changes in the

explanatory variables. Therefore, the ability to detect multicollinearity is important

in linear regression analysis. Such detection involves two successive and related steps,

firstly detecting the presence of multicollinearity problem, and secondly detecting

its strength or severity.

The rest of this paper is organized as follows. First multicollinearity is introduced

briefly, then its effects on parameter estimates and model prediction and its different

diagnostic indices are discussed. At the end, a real data set is examined, by using the

R statistical software [18], for detecting and relaxing the multicollinearity problem

among the data.

2. Multicollinearity

We will give a short summary of the problem of ill-conditioning in linear regres-

sion, that is, the problem of multicollinearity. This problem is highly common in

practice when modelling the real data. A key goal of regression analysis is to ex-

plain the relationship between one dependent (or response) variable and a set of

independent (or regressor) variables.

Assume that data for the dependent variable are arranged in the n × 1 vector

y and the data for the explanatory variables are in the n × p matrix X, known as

design matrix. Consider now the multiple linear regression equation:

(2.1) y = Xβ + ε,

where β is a p× 1 vector of unknown parameters and ϵ is an n× 1 vector of random

errors with mean zero and variance σ2In, where In is an identity matrix of order n.

In the case of perfect multicollinearity (in which one independent variable is

an exact linear combination of the others) the design matrix X is not full rank.

Therefore, the matrix XTX becomes singular and as a result the ordinary least

squares (OLS) estimator β̂ = (XTX)−1XTy does not exist (if so, it is said that

XTX becomes ill-conditioned which is the antonym of well-conditioned), see [16].
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In the case of near to perfect multicollinearity (or near-linear dependence), prob-

lems like large coefficients in absolute value, large variance or standard errors with

wider confidence intervals (making the models less accurate and useful), and small

t-ratios, are occurred.

In practice the case of perfect multicollinearity is rare, so it is more useful to

speak about near to perfect multicollinearity or multicollinearity problem’s severity.

It is worth mentioning that although multicollinearity makes it hard to interpret the

regression coefficients and it reduces the power of the model to identify independent

variables that are statistically significant but it does not influence the predictions,

the precision of the predictions, and the goodness-of-fit statistics. If ones primary

goal is to make predictions, and he/she does not need to understand the role of each

independent variable (like what happens in Machine Learning), there is no need to

detect multicollinearity and eliminate its sources, see [16], where it is mentioned

that:

“The fact that some or all predictor variables are correlated among themselves

does not, in general, inhibit our ability to obtain a good fit nor does it tend to affect

inferences about mean responses or predictions of new observations.”

In general, there are five (primer) sources of multicollinearity [1]:

• The data collection method employed,

• Constraints on the model or in the population,

• Existence of identities or definitional relationships,

• Imprecise formulation of model,

• An over defined model.

3. Effects of Multicollinearity

One issue with multicollinearity in data might be that the coefficient of deter-

mination, R2, will be high so that the regression looks good as a whole (note that

multicollinearity does not affect the value of R2) but some variables are statistically

insignificant when they should be significant without multicollinearity. To show this,

note that the variance of j-th non-intercept parameter in linear multiple regression

model can be expressed as [9]:

var(β̂j) =
σ2

(n− 1)s2j
×

(
1

1−R2
j|others

)
,
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where s2j is the sample variance of j-th regressor, and R2
j|others is the squared co-

efficient of determination from the regression of j-th regressor on other regressors.

It is obvious from the second part of the above equation that, the value of R2
j|.

approaches one if we face severe multicollinearity in the model, which yields that

the var(β̂j) approaches ∞. In such situation, t test statistics, which are the ratio of

the coefficients estimates to their standard errors, become smaller. In this case, we

might not be able to trust the p-values which identify some independent variables,

statistically insignificant. Under extreme (not perfect) multicollinearity, as long as

the OLS assumptions do not violate, the OLS estimator β̂ remain unbiased but it

is less accurate, i.e., the addition or deletion of just a few sample observations can

substantially change the estimated coefficients. Due to multicollinearity the confi-

dence interval for coefficients estimators will be wider (reflecting greater uncertainty

in the estimates) because for example 95 percent confidence bounds are coefficients

estimates plus or minus approximately two standard errors, [15]. Multicollinearity

also results in the opposite signs of the estimated coefficient, [5]. See [11] where

important consequences of multicollinearity in the linear regression are discussed

using numeral examples.

Despite the above mentioned effects, multicollinearity does not influence the pre-

dictions, the precision of the predictions, and the goodness-of-fit statistics. If the

researcher primary goal is just to make predictions, and understanding the (partial)

role of each regressor on response does not matter, one can ignore multicollinearity,

safety. To explain this, consider for example the following simple regression model,

(3.1) y = β0 + β1x1 + β2x2 + β3x3 + ε,

assume x3 = 2x2 + x1, which indicates a perfect collinearity and a typical OLS

solution will not exist because (XTX)−1 has a singularity. However, let’s plug one

equation into another:

y = β0 + (β1 + β3)x1 + (β2 + 2β3)x2 + ε = β0 + b1x1 + b2x2 + ε,

where b1 = β1 + β3 and b2 = β2 + 2β3 . So, clearly we can estimate β0, b1 and

b2 by usual OLS method, i.e., there is a solution, and replacing back to estimate

the original β1, β2 and β3 parameters, but the only problem is their non-uniqueness.

This means, we can choose any β̂1, β̂2 and β̂3, which would give us b̂1 = β̂1 + β̂3

and b̂2 = β̂2 + 2β̂3, i.e., we have infinite number of triple vectors (β̂1, β̂2, β̂3) that

correspond to a unique solution of (b̂1, b̂2) pairs. Obviously, any of these triples is as
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good as any other for prediction of y. Moreover, all these triples are as good as the

unique (b̂1, b̂2) coefficients for the purpose of forecasting. Indeed, multicollinearity

does not affect the so-called predictive power of the model with producing bad

predictions. The only problem with multicollinearity is the inference, where for

example we are interested to know how x1 impacts y, where the typical analysis of

b̂1 coefficient and its variance will be problematic.

In sum, detection of multicollinearity among regressors is of great importance.

In the following, we mainly focus on some multicollinearity diagnostic indexes that

help us to detect existence of multicollinearity problem among regressors. Almost

all of this indexes has been gathered by [13] and has been mainly recalled in the

next section.

4. Multicollinearity Diagnostics

Having defined multicollinearity in a near to perfect rather than a complete sense,

we must face the increased problem of detection. Indeed, the researcher whose set

of independent variables are perfectly correlated may be more fortunate than one

whose variables are nearly so. The former case are soon discovered by the mechanical

inability to derive β̂ while the latter’s problems may never be fully understood [20].

In the following the list of some important multicollinearity diagnostic measures

along with short description are given.

• Determinant, the matrix XTX will be singular, or its determinant is zero,

if it contains linearly dependent columns. On the other hand, since the cor-

relation matrix R of the scaled X is equal to XTX, the determinant of R

can be used as an indicator of multicollinearity existence among regressors.

When determinant of R equals one (or it approaches zero), the columns of

original X are mutually orthogonal (or are linearly dependent). In the later

case, multicollinearity becomes most severe, see [2]. The use of the determi-

nant to detect collinearity has been criticized by [19]. The determinant is

excessively sensitive to scaling. For example, the matrix cIn, whose deter-

minant is cn and can be made arbitrarily small, has a simple inverse c−1In,

for c ̸= 0.

• R-squared, the coefficient of determination (R2) from regression of all x

on y. The R2 is a monotonic non-decreasing function of number of regres-

sors included in the model, that is, R2 indicates how well the regression
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fits the data. Therefore, higher value of R2 indicates the more chances of

multicollinearity among regressors.

• Farrar χ2, it is the Chi-square test for detecting the strength of multi-

collinearity over the complete set of regressors and is defined as χ2 =

−(n − 1 − 1
6(2p + 5)) log(|XTX|) ∼ χ2(−1

2
p(p − 1)). The multicollinear-

ity exists among regressors if χ2 > χ2(−1
2p(p − 1)), [8]. Alternatively, [12]

suggested the modified statistic χ2 = −(n− 1− 1
6(2p+ 5)) log(1− |XTX|).

• The variance inflation factor (VIF), is a measures traditionally applied to

detect the presence of multicollinearity, and is defined as:

VIF j =
1

1−R2
j

,

where R2
j is the coefficient of determination of a regression of explanatory

j on all the other regressors. A VIF of 5 or 10 and above indicates a

multicollinearity problem, [17]. Assuming the standardized regressors (i.e.,

the columns of design matrix X, to be centred and scaled for unit length),

the covariance matrix of the estimated b has the simple form,

Var(b̂) =
σ2

n− 1
R−1

X ,

where R−1
X is the correlation matrix among the standardized regressors.

Then, the diagonal elements of R−1
X are just the VIF j , [6].

• Condition indexes, the eigenvalues of XTX, say λ1, λ2, ..., λp can be used to

measure the multicollinearity in the data. If there are one or more near-

linear dependencies in the data, then one or more of the characteristic roots

will be small. One or more small eigenvalues imply that there are near-linear

dependencies among the columns of X.

The condition indexes of the XTX matrix are defined as,

CIj =
max(λi)

λj
, j = 1, 2, .., p,

the number of condition indexes that are ”large” is a useful measure of the

number of near-linear dependences in XTX. What is to be considered large

has been determined empirically by [3], by which weak dependencies are

associated with condition indexes around 5-10, whereas moderate to strong

dependencies are associated with condition indexes of 30-100.
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Some analysts prefer to examine the condition number of XTX, defined as,

κ =
max(λj)

min(λj)
, j = 1, 2, .., p,

generally, condition number less than 100, between 100 and 900 and greater

than 900, indicates no serious, moderate to strong and severe multicollinear-

ity problem, respectively, see chapter 5 of [3].

• Kleins rule, Klein [14] argued that it is not necessarily a problem unless the

inter-correlation is high relative to the overall degree of multiple correlation

i.e., R2
y < R2

j , where R2
j is from a regression of explanatory variable j on

all of the others and R2
y is from a regression of response variable y on all

explanatory variable.

• The corrected VIF (CVIF), for evaluating the impact of the correlation

among regressors in the variance of the OLS, [7] defined a new index of

multicollinearity, namely the corrected VIF (CVIF):

CV IF j = V IFj ×
1−R2

1−R2
0

,

where R2
0 = R2

yx1
+R2

yx2
+ ...+R2

yxp
. Collinearity exists if CV IF j ≥ 10.

5. Eigensystem of XTX

As we have seen, the collinearity diagnostics are all functions of the eigenval-

ues and eigenvectors (eigensystem) of the XTX matrix in the regression model1).

Perfect linear relation in the data matrix Xn×p, yields linear system of equations

Xv = 0 that allow a solution for v to be obtained. It can be shown that for each ex-

act linear dependency among the columns of X there is one zero eigen value of XTX.

However, when there is no perfect multicollinearity but near to perfect multicollinear-

ity in X we need to find one or more non-zero vectors v such that Xv = a with

a ̸= 0 but close to zero or equivalently the length of a, ∥a∥ should be small. Since

finding the set v values which makes ∥a∥ =
√
vTXTXv small has non unique solu-

tion without considering any condition on v’s, we search for v within those vectors

which have unit length, i.e ∥v∥ = 1.

To find desired vector v and the corresponding minimum length ∥a∥, consider the

1)or equivalently, the eigensystem of the correlation matrix of the predictors in the regression
model.
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singular-value decomposition (SVD) of the matrix X = UDV T, where X is an ar-

bitrary n× p matrix, n ≥ p, U is n× p, V is p× p satisfying UTU = V TV = Ip and

D = diag{λ1, ..., λp} is a p× p non-negative and diagonal matrix of singular values

(or eigenvalues) of X with λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0. Now

∥a∥2 = ∥Xv∥2 = vTXTXv = vTV DTUTUDV Tv = vTV D2V Tv,

according to [3] the minimum length ∥a∥ and the corresponding vector v which pro-

duce this minimum length a are the positive square root of the smallest eigenvalues

and corresponding eigenvector of XTX. Therefore the length of ∥a∥ in the linear

system Xv = a that address the multicollinearity problem in columns of X is de-

fined in terms of the square roots of the eigenvalues of XTX, which are the singular

values of X.

The relevance of this is when we want to find least square estimator of the pa-

rameter β in the linear regression model y = Xβ + ε by solving the linear sys-

tem (XTX)−1β̂ = XTy with variance-covariance matrix σ2(XTX)−1, where multi-

collinearity in data matrix X yield ill-conditioning problem in matrix XTX causing

(XTX)−1β̂ = XTy do not have a unique solution and its variance-covariance matrix

to be numerically unstable.

Therefore the eigensystem of the matrix XTX has been used for many years when

dealing with multicollinearity problem in the linear regression model.

Note that the SVD of the matrix X is mathematically equivalent to determining

the eigensystem of the matrix XTX, since if X = UDV T, the column vectors of V

and the squares of singular values (diagonal elements of D) are the eigenvectors and

the eigenvalues of the of the matrix XTX, respectively2).

Despite this mathematical equivalency between two methods when calculating the

eigensystem of XTX, [4] gives some reasons to explain why the use of SVD of

an ill-conditioned matrix X is preferred regarding numerical stability of numerical

algorithm developed for computing SVD. The ill-conditioning in X is reflected in the

size of singular values. The extent of ill-conditioning is described by how small is j-

th singular values relative to maximum of all singular values. When anyone singular

values of the data matrix X, λi is small relative to λmax it may be interpreted as

indicative of a near dependency between columns of X. The ratios λmax
λj

are the

condition indexes of matrix X 3) and according to [4] condition indexes less than

2)The columns of U are the eigenvectors of XXT, as well.
3)The condition indexes are at least equal to one and their maximum is the condition number.
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10 indicates weak dependencies weak dependencies, whereas moderate to strong

relations are associated with values between 30 to 100.

One issue with the condition index is the role of measurement unit of explanatory

variables (columns of X) on its value. This situation is known as artificial ill-

conditioning. Before computing the singular values of data matrix X, each column

should be scaled to have unit length but centering the columns must be avoided

because it masks the role of the constant term in any underlying near-dependencies,

[3]. This scaling ensures that the units of measurement of the original variables do

not influence the value of condition indexes which are referred to scaled condition

indexes of X.

6. Illustrative Example

Table 1. The estimated parameter using OLS method and variance
inflation factors for PCD data.

Coefficients Unscaled estimate Scaled estimate Std. Error t value Pr(> |t|) VIF
Intercept 62.40 0.179 0.201 0.89 0.40 0

X1 1.55 0.150 0.072 2.08 0.07 38
X2 0.510 0.150 0.378 0.77 0.50 254
X3 0.102 0.014 0.104 0.14 0.90 47
X4 249.58 -0.144 0.250 -0.20 0.84 283

Table 2. Condition indexes.

Scaled condition Variance Decomposition Proportions
No Eigenvalues index intercept X1 X2 X3 X4

1 4.120 1.00 0.0000 0.0004 0.0000 0.0002 0.0000
2 0.554 2.73 0.0000 0.0100 0.0000 0.0027 0.0001
3 0.299 3.78 0.0000 0.0006 0.0003 0.0016 0.0017
4 0.038 10.46 0.0001 0.0574 0.0028 0.0460 0.0009
5 0.0001 249.58 0.9999 0.9316 0.9969 0.9499 0.9973

As a leading example, we use the Portland Cement Dataset (PCD) originally

due to [21]. This dataset contains 13 observations on the following five variables:

Y (The heat evolved after 180 days of caring in calories per gram), X1 (Tricalcium

Aluminate), X1(Tricalcium Silicate), X3 (Tetracalcium Aluminoferrite)and X4 ( Di-

calcium Silicate). For these data, the question is how well the heat evolved can be
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explained by by the other variables using the following regression model

Y = β0 +Σ4
i=1βiXi + ε

To permit direct comparison of the variable coefficients, all variables were rescaled

to have unit length.

The model fits very well, with R2 = 0.98; however, the partial t-tests for pa-

rameters shown in Table 1 indicate that there is no significant predictor at 0.05

significant level in the presence of other variables. These two facts together are

amongst the signs of multicollinearity problem in data. Table 1 also shows the vari-

ance inflation factors. By the rules of thumb described later, all predictors have

potentially serious problems of collinearity. The condition indices and coefficient

variance decomposition proportions are given in Table 2.
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