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1. INTRODUCTION   

Live-cell imaging provides tremendous images

of biological processes, which we will be calling

microscopy data. Segmentation is one of the most

important procedures that can help analysts to

have a good comprehension of those microscopy

images. Most of the segmentation methods related

to the cellular images consist of conventional com-

puter vision based methodology which includes

techniques like simple filtering, thresholding meth-

ods, morphological filters and watershed transform

[1,2].

The main problem we face while using these

methods is that they do not provide fair segmenta-

tion, most of the spatial information of the cellular
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elements being lost. It ends up with many of the

cells being joined (connected) and causing a lack

of spatial consistency. This is a very critical sit-

uation as the full understanding of the images de-

mands clear and fair results in terms of cells

preservation. This fact explains why most of these

traditional computer vision based methods demand

quite intensive post-processing tasks [3].

Instead of using computer vision based methods,

the literature has widely adopted the machine

learning methodology. Following the classic two

steps of a machine learning framework (feature

extraction and classification), the pixels are repre-

sented by their corresponding features and are

used as the inputs of the classifier [4]. The features

can be the intensity variation, the texture related

information, the spatial characteristics or a mixed

of all of them [4]. Also, different kinds of learning

algorithms can be adopted, from the use of support

vector machine (SVM) [5] to the artificial neural

network (ANN) based classifiers [6]. The draw-

back with these methods is that they suffer from

the lack of the spatial consistency between the

pixels. And, moreover, as for the computer vision

based methods, they still require a lot of

post-processing tasks that can be very expensive

in terms of time.

Deep learning [7] based methods have gained

attention in the recent years for their ability of un-

derstanding images in a high-level fashion. Instead

of using conventional machine learning methods

with engineered features, researchers have widely

adopted the deep learning methodology, which pro-

vides a fully automated feature learning process.

Instead of manually choosing the features, the deep

networks provide high-level feature processes

learned in an automatic way [7]. They were also

adopted in cell segmentation problems [8,9].

While most of them perform fairly pleasant seg-

mentation, deep learning methods face the problem

of the trade-off between the semantic and spatial

features [9]. While the network gets deeper, it ex-

tracts more complex features that can recognize

complex shapes and forms, but the fact of down-

sampling the image while its goes through the net-

work causes the loss of spatial consistency be-

tween the pixels located in some regions of the

images.

This leads to excellent results in terms of object

recognition but unfair results in terms of shape and

boundary preservation. And when it comes to mi-

croscopy data, the preservation of the shape and

the boundaries of the cells are more than neces-

sary, they are critical. To tackle this trade-off

problem, many studies have adopted the use of

convolutional autoencoders (CAE), which do not

simply map some given inputs to the class scores,

but, instead, they try to construct a predefined seg-

mentation mask given a certain input.

Beside the segmentation task, cell counting con-

sists of estimating, using the input microscopy im-

age, the number of the cells located inside it. Cell

counting can be linked with the segmentation

scheme in a one-network-to-tasks fashion [10],

where a single network is used in order to produce

the segmentation mask and to estimate the number

of the cells in the same time. Or, cell counting can

be investigated separately with segmentation [10],

where, again, the segmentation mask is utilized

separately for estimating the number of the cells

inside it.

We propose a cell segmentation and counting

scheme which uses deep convolutional autoen-

coders (CAE) in a pyramidal way in order to dras-

tically encode the spatial resolution of the cells with

a high-level feature learning. First, inputs of dif-

ferent sizes are given to different CAEs for a

scale-based encoding-decoding system. Gaussian

pyramid representation is applied over the original

cellular images in order to generate inputs with

different size and different spatial resolution. Two

sizes are adopted in this work, the first input being

the original microscopy image, and the second in-

put being the Gaussian blurred and down-sampled
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version. Each one of them is given to a different

CAE which learns to construct the segmentation

mask. The obtained masks from the two CAEs are

summed in an element-wise fashion in order to

produce the final segmentation mask.

The second step, the counting cell process, rep-

resents the main contribution of this paper. We

propose a novel cell counting method based on the

utilization of the high-level features from the two

CAEs and a shallow regressor network. The qua-

si-majority of the papers in the literature propose

the use of the generated masks as prior information

for the cell counting. But, these constructed masks

are generally noisy and do not provide accurate in-

formation, especially in case of overlapping cells.

We avoided using the segmentation mask, as all

the other papers do, but, in a quite original way,

we propose to extract the latent representations of

the images from the two CAEs. The extracted rep-

resentations are concatenated in one single feature

vector, which will be used as the input of a neural

network based regressor that will learn to output

the number of the cells in the image.

We assume that the scale-dependent high-level

feature learning process done with the pyramidal

CAEs will allow the latent representations to stat-

ically encode the shape, boundary and number of

the cells and provide a better learning capability

to the regressor. The results demonstrate that the

proposed pyramidal CAE performs at least as good

as the other state-of-the-art segmentation meth-

ods in terms of cellular shape preservation. But, the

proposed cell counting scheme achieves outstand-

ing results and outperforms the conventional and

other state-of-the-art methods that utilize the

segmentations masks as prior information. Fig. 1

represents schematically the proposed method of

this paper.

(a)

(b)

Fig. 1. Summary of the proposed Pyramidal CAE: (a) the construction of the segmentation masks with different input 

sizes; (b) the features F1 and F2 are concatenated to form the high-level feature vector that will be used 

as the input of a neural network based regressor for the cell counting part.
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2. PROBLEM PRESENTATION

As explained before, the cell segmentation prob-

lem consists of assigning every single pixel inside

the microscopy image to the cells body or the

background. The ground truth, which is commonly

represented as a binary image in case of a binary

classification, represents the expected segmenta-

tion result, constructed by a manual labelling from

biological experts. While building the dataset for

the supervised learning process, the ground truth

image is used as a label source for the pixels. In

Fig. 2, we show some of the images used for the

present work. In the left part of Fig. 2, we see the

image resulting directly from the microscopy. In

real world application, these kinds of images are

instantaneously used for the purpose of analysis,

and, consequently, any segmentation scheme must

be able to analyze it. We can guess how difficult

it can be to segment such a very low contrast

image. That image contains 14 cells, the one shown

in the center also contains 14 cellular elements. The

image shown in the right of Fig. 2 contains 100

cellular elements.

Patch-based segmentation is the process of rep-

resenting each pixel by a small square of a given

n×n size, called patch, with the concerned pixel, the

one that must be classified, located right in the

center of the square image, being surrounded by

the neighboring pixels. The label that must be as-

signed to the center pixel is seen as the label of

all the patch. Which means that every data will be

a really small image with the concerned pixel in

the middle. The CAE does not involve the patch

creation, since the images are given in their origi-

nal size. The next two sections present step by step

the proposed method

3. SEGMENTATION WITH PYRAMIDAL CAE

Auto-encoders [11] are unsupervised learning

methods that are used for the purpose of feature

extraction and dimensionality reduction of data.

Neural network based auto-encoder consists of an

encoder and a decoder. The encoder takes an input

x of dimension d, and maps it to a hidden repre-

sentation, of dimension r, using a deterministic

mapping function f such that

(1)

where the parameters W and b are the weights and

bias associated with the layer that takes the input

x. These parameters must be learned by the en-

coder system. The decoder then takes the output

y of the encoder and uses the same mapping func-

tion f in order to provide a reconstruction f that

must be of the same shape or in the same form

(which means, almost equal to) as x. Using equa-

tion (1), the output of the decoder is also given by

(2)

where the parameters W’ and b’ are the weights

and bias associated with the decoder layer. In final,

the network must learn the parameters W, W’, b

and b’ so that z must be close or, if possible, equal

Fig. 2. Examples of the images used for the experiments: left, a microcopy image containing 14 cells; in the center, 

we have 14 cells also; in the right, the image contains 100 cells. We can remark how the complexity of the 

task augments as the number of cells increases.
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to x. Though, the network leans to minimize the

differences between the input x and the decoder’s

output z.

This encoding-decoding process can be done

with the use of convolutional neural networks, us-

ing what we call the convolutional autoencoder

(CAE). Unlike conventional neural networks, where

you can set the size of the output that you want

to get, the convolutional neural networks are char-

acterized by the process of down-sampling, which

is accomplished by the pooling layers, a down-

sampling system that is incorporated in their

architecture. As explained in the first section of the

paper, this down-sampling process insidiously in-

duces the loss of spatial information while we go

deeper inside the network, causing the trade-off

between the semantic and the spatial features.

In order to tackle this problem, we can use the

CAE instead of conventional convolutional neural

networks. In fact, in the CAE, after the down-sam-

pling process accomplished by the encoder, the de-

coder tries to up-sample the representation until

we reconstruct the original size. This can be made

by the so-called backwards convolution, often

called “deconvolution” operations. In the segmen-

tation process, instead of reconstructing the origi-

nal input, like normal autoencoders do, we aim to

reconstruct the segmentation mask when the net-

work takes the original image. So, the final solution

of the network can be written in the form

(3)

where z still denotes the decoder’s output and m

is the segmentation mask. This equation means

that the network must learn the adequate parame-

ters so that the difference between the decoder’s

output z and the segmentation mask m is mini-

mized. The adopted cost function is a cross-en-

tropy cost described as

(4)

where N represents the total number of data (total

number of images used during the training proc-

ess), m still represents our segmentation mask,

which is given by the ground truth, and z is the

output of the decoder described in equation (2). The

network learns the parameters in equation (3) so

that the error in equation (4) is minimized.

In order to statistically embed the spatial in-

formation of the input and to prevent the afore-

mentioned trade-off between the semantic and

spatial features, we propose, as discussed before,

a pyramid of convolutional autoencoders. The idea

is to use two CAEs with each one of them having

an input size of different scale. The original scale

will be used to encode the semantic features, and

the decreased scale will be useful for the encoding

of the spatial features. Gaussian pyramid is used

in order to generate inputs of different sizes with

different spatial resolution, as we show in Fig. 3.

As clearly illustrated in Fig. 1, the original image

will be given to one of the CAEs and the down-

sampled and blurred version will also be given to

another CAE for the pyramidal feature learning

solution. The final mask will result on the summa-

tion of the two “reconstructed” masks from both

CAEs. The second mask, which is the mask out-

putted by the CAE that takes the down-sampled

and blurred version, will be up-sampled in order

to equal the original size and will be summed up

with the mask outputted by the first CAE. The

mask resulting from the summation will represent

the final segmentation mask of the scheme. The

(a) (b)

Fig. 3. (a) An original image with 10 cells (520×696); 

(b) the Gaussian blurred and down-sampled 

version, also containing 10 cells (260×348). 

The Gaussian filter used here has a standard 

deviation of 6.
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architecture of the first CAE is shown in Table 1.

This architecture is the same with the one of the

down-sampled version, but with all the dimensions

divided by two, as we can clearly see in Table 2.

The two CAEs constitute what we call the pyr-

amidal convolutional autoencoder, as they take two

inputs of different scales and their outputs are

summed in order to obtain one final segmentation

mask. It is necessary to mention that, as we can

see in the architecture of the two networks, the

original image size (520×696, as depicted in Fig.

3), was first resized to 224×224. Thus, the down-

sampled version has a size of 112×112.

In the two tables, we can see a process of

down-sampling (encoding) with the stacking of

many convolutional and pooling layers. Just after

we reach a 1×1×4096 feature volume, we start the

up-sampling process (decoding) with the stacking

of many deconvolutional and unpooling layers. The

convolutional layers are denoted by “Conv” in the

tables, the pooling layers are mentioned by “Pool”,

the deconvolutional layers are represented by

“Deconv” and the unpooling layers are depicted as

“Unpool”.

4. NOVEL CELL COUNTING METHOD

Each one of the 5th convolutional layers of the

two CAEs contain 4096 neurons (1×1×4096). The

activations from these layers are extracted and

concatenated in order to form one single vector,

which gives us 8192 dimensional final feature vec-

tors. These vectors represent the latent repre-

sentations of the CAEs and they are given to the

neural network based regressor for the cell count-

ing part. Which means that the second part of our

proposed scheme, the cell counting part, starts by

extracting the high-level features of the two

CAEs. Then, we put them together in order to form

one feature vector that contain the semantic and

spatial characteristics of the input.

Unlike with classification, the network must

Table 1. CAE architecture for the original images.

Layer Filter size # Feature maps Stride Padding Output

Input - - - - 224224

Conv 1 33 64 1 1 224224

Pool 1 22 64 2 0 112112

Conv 2 33 128 1 1 112112

Pool 2 22 128 2 0 5656

Conv 3 33 256 1 1 5656

Pool 3 22 256 2 0 2828

Conv 4 33 512 1 1 2828

Pool 4 22 512 2 2 1414

Conv 5 1414 4096 1 1 11

Deconv 5 1414 512 1 1 1414

Unpool 4 22 512 2 2 2828

Deconv 4 33 512 1 1 2828

Unpool 3 22 256 2 0 5656

Deconv 3 33 256 1 1 5656

Unpool 2 22 128 2 0 112112

Deconv 2 33 128 1 1 112112

Unpool 1 22 64 2 0 224224

Deconv 1 33 1 1 1 224224
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output a number designating the number of the

cells that we have in the image. Artificial neural

network (ANN) is an interconnected group of arti-

ficial neurons. These neurons use a mathematical

or computational model for information processing.

ANN is an adaptive system that changes its struc-

ture based on information that flows through the

network [12]. The neural network acquires the

ability to generalize based on the training data and,

if the training data contains all the characteristics,

all the meaningful information possible of the proc-

essed sounds or vibrations, the network can predict

outcomes for new, previously unseen data sound

or vibrations. One of the commonly used structures

of ANN is the multi-layer perceptron. Using su-

pervised learning, the sample {xk} is fed to the net-

work and produces an output {y}. The input pattern

{xk} is then propagated through the network in the

following way:

(5)

where yi denotes the output of a given neuron i,

and N the number of input neurons, while M de-

notes the number of hidden layers. is the

weighted sum in this form: j represents the input

neuron that comes to feed the neuron, and n de-

notes the layer where we are (n=1 represents the

first layer). To implement this procedure, one

needs to calculate the error derivative with respect

to weight in order to change the weight by an

amount that is proportional to the rate at which

the error changes as the weight is changed. The

backpropagation algorithm [12] is used in this re-

search paper. The activation function f is a sigmoid

function and is defined as:

(6)

Once we have our feature vectors, we can con-

struct our ANN based regressor. The network has

an input layer containing 8196 neurons. We have

created two hidden layers. The first one contains

250 neurons and the second one has 50 neurons.

The last layer contains one single neuron that must

output the number of the cells located inside the

Table 2. CAE architecture for the down-sampled and blurred version of the inputs.

Layer Filter size # Feature maps Stride Padding Output

Input - - - - 112112

Conv 1 33 64 1 1 112112

Pool 1 22 64 2 0 5656

Conv 2 33 128 1 1 5656

Pool 2 22 128 2 0 2828

Conv 3 33 256 1 1 2828

Pool 3 22 256 2 0 1414

Conv 4 33 512 1 1 1414

Pool 4 22 512 2 2 77

Conv 5 77 4096 1 1 11

Deconv 5 77 512 1 1 77

Unpool 4 22 512 2 2 1414

Deconv 4 33 512 1 1 1414

Unpool 3 22 256 2 0 2828

Deconv 3 33 256 1 1 2828

Unpool 2 22 128 2 0 5656

Deconv 2 33 128 1 1 5656

Unpool 1 22 64 2 0 112112

Deconv 1 33 1 1 1 112112
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image. Which gives us a structure of 8196-250-

50-1. All the hidden layers use the squashing sig-

moid function denoted in equation (6). But, because

we face a regression problem here, and not a clas-

sification one, the last layer has the rectified linear

unit (ReLu) as the activation function. The ReLu

is defined by:

(7)

where z represents the outputs from the second

hidden layer. The next section discusses about the

obtained results using the proposed method.

5. RESULTS AND DISCUSSION

5.1 Segmentation

We have used the BBBC005 dataset from the

Broad Institute’s Bioimage Benchmark Collection

[20]. This dataset is a collection of 9,600 simulated

microscopy images of stained cells. We have shown

an example of these images in Fig. 2. The Institute

has used the SMCEP simulation platform in order

to generate these images. The cell were generated

in such a way that they are similar to the U2OS

human cells. The simulated cells were then blurred

with variable Gaussian filters in order to mimic the

phase microscopy temper. Each image in the data-

base has a size of 520×696, and they are encoded

in 8-bit grayscale. As explained before, for the

purpose of using these images in our networks, we

have resized them to 224×224. Among the 9,600

images, 1,200 have their ground truth labelled by

hands. These ground truths, as explained before,

are utilized as the label source for the feature

learning process. Among the 1,200 images that

have ground truths, 700 were utilized as the train-

ing data. The results concerning the projections of

the features extracted from the CAEs are shown

in Fig. 4 and we can see how discriminative they

are. By discriminative, we mean that they can be

easily separated by a strong nonlinear classifier,

explaining why most of the segmentation masks

are really pleasant.

It is necessary to mention that the segmentation

result radically depends on the nature of the image

under investigation. In case of non-overlapping

cells, and when the image contains between one

and around 30 cells, the results obtained using our

proposed method and the deep learning based

state-of-the-art methods are quite similar. It is

very difficult to see any differences between them.

In fact, in Fig. 5, we show the results concerning

the segmentation for the case where the image

does not contain overlapping cells. And the image

in Fig. 5 contains only 18 cellular elements. In Fig.

5 (a), we have the original phase contrast image,

in (b), we have the ground truth, in (c) we have

the result obtained by using our method, in (d) we

have the result using the Unet [8] and, finally, in
(e), we show the result using the FPN as proposed

in [9]. We can remark that all the results are equiv-

alent and they are very outstanding because they

produce almost the same result than the ground

truth.

But, in case of overlapping cells and when the

image contains many elements, the differences be-

tween the three methods becomes slightly clear. In

Fig. 6, we show the results in case of overlapping

cells and the image contains 35 cells. The regions

marked in red in the results denote the cases where

Fig. 4. Visualization of the latent representations ex-

tracted from the networks.



343Pyramidal Deep Neural Networks for the Accurate Segmentation and Counting of Cells in Microscopy Data

the cells are connected. The image shown in Fig.

6 (c), which is the result of our method, has less

marked regions compared to the others, which

means less connected cells.

For an objective evaluation and comparison of

the segmentation result, we have computed the

(a) (b) (c)

(d) (e)

Fig. 5. Results of the segmentation, case of non-overlapping cells. (a) The original phase contrast image; (b) the ground 

truth; in (c), (d), and (e), we have the masks computed using the proposed method, the Unet [8] and the FPN 

[4], respectively. The image contains 18 cells.

(a) (b) (c)

(d) (e)

Fig. 6. Results of the segmentation, case of overlapping cells. (a) The original phase contrast image; (b) the ground 

truth; in (c), (d), and (e), we have the masks computed using the proposed method, the Unet [8] and the FPN 

[4], respectively. The image contains 35 cells.
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dice similarity index (DSC) of the final segmenta-

tion mask. This index computes the difference be-

tween the ground truth and the segmentation result

in terms of region ratio. The DSC is denoted in

equation (8), where AGT denotes the targeted re-

gions (in our case, the cell interior) of the ground

truth, while Aseg denotes the segmented region us-

ing the proposed scheme. The operator |■| com-

putes the number of pixels in the given region.

(8)

The DSC is a number between 0 and 1, DSC

∈ [0 1], and when it is close to 1 it means that

the segmented result is very similar to the targeted

or expected result (ground truth), and when it is

close to 0, it means that the segmented result and

the ground truth are really different. A greater DSC

denotes a good segmentation and a small one de-

notes a poor segmentation. Another index is the

Jaccard index (JI), computed by

(9)

which is the intersection between ground truth and

the segmented region divided by the union of the

two regions.

We conduct a comparison study with the method

in [16], where the authors have used a feature pyr-

amid networks but with two big differences: first,

they have down-sampled the original input without

using Gaussian pyramid, like proposed here; sec-

ondly, as most of the conventional methods in the

cell counting literature, they have used the mask

generated by the network as the prior information

for counting the cells. We demonstrate here that

using the latent representation of the networks in-

stead of utilizing the created masks, which contain

significant noisy information, can lead to better

results. Another method using the deep learning

based approach can be seen in [8]. The difference

is not important since all these methods, in terms

of segmentation, accomplish better results com-

pared with traditional computer vision and machine

learning methods. Our proposed segmentation meth-

od also accomplishes as good results as the two

deep learning methods.

We have, using our method, a DSC of 0.96,

whereas the method in [9] stagnates at 0.95. Same

with the JI index, where our method is slightly

better. The reason comes from the fact of utilizing

different spatial resolution provided by the Gaus-

sian pyramid in our case. The Unet in [12] accom-

plishes 0.93 and 0.86 for the DSC and JI, re-

spectively.

The computer vision based method, the dynamic

thresholding proposed by Otsu [13 ] cannot seize

the cellular properties and leads to the significant

lack of consistency. Using the thresholding method

requires an intensive post-processing task. The

post-processing can be the use of multiple mor-

phological operations and different thresholding

methods again, costing a lot of time to the user.

The DSC and JI stagnate at 0.75 and 0.62, re-

spectively, for this computer vision based conven-

tional method.

The conventional machine learning method used

for the comparison is the method developed in [4].

In this work, the authors have proposed the su-

pervised-learning based segmentation using the

brightness, color and texture features. This method

also lacks the spatial consistency and requires, as

for the dynamic thresholding method [14], a lot of

post-processing burden. All the results are sum-

marized in Table 3.

Another objective comparison for the segmenta-

tion results is shown with the ROC-curves of the

classification, computed in a pixel level and shown

in Fig. 7. As mentioned before, the difference is

not too much between the deep learning methods,

even though our proposed scheme performs slight-

ly better. The computer vision and the conventional

machine learning based methods perform a bit

poorly, since they require a lot of post-processing

task, as explained in the previous paragraph.
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Fig. 7. ROC-curves for the classification of the pixels 

of the different methods.

5.2 Cell counting

As said before, we propose a very novel method

for counting the cells by using, not the segmented

masks, as most of the methods do, but the latent

representations learned by the deep pyramidal

CAEs. As we have seen with the segmentation re-

sults presented in the previous section, the seg-

mentation masks are always noisy because they

increase the connections between the cells when the

image contains many overlapping elements. This

is the principal reason why we have avoided to use

the outputted masks as the prior information for

counting the cells. Instead, we propose in this paper

to utilize the high-level features learned by the two

CAEs as the inputs of a neural network based

regressor.

In Fig. 8, we show the results concerning the

counting part. We show the actual number of the

cells, provided as a ground truth, and the number

computed by three different methods. The results

for the computer vision based techniques for the

cell counting, as proposed in [15], are shown in

green. The results for the state-of-the-art deep

learning method, as used in [9], are shown in

magenta. And our results are shown in red color.

As we can see in Fig. 8, the more we have cells

in the image, the more difficult is to predict the

exact number of the cells, because when there are

too many cells in the image, the probability of also

having many overlapping cases is really high. But,

if we look at Fig. 8, we see that our method man-

ages to stay close to the “actual number of cells”,

shown in blue color. Even when the number of the

cells goes really high, our proposed method still

manages to output values that are really close to

the real number of cells. And, in case we have less

than 30 cells, as we can see in the Fig. 8, our meth-

od performs without an error. In the same time,

Table 3. DSC and JI indices values. 

Method DSC JI Post-processing

Thresholding [14] 0.75 0.62 Intensive

Brightness, color and texture features [4] 0.88 0.74 Intensive

Unet [8] 0.93 0.86 Not intensive

FPN based segmentation and counting [9] 0.95 0.86 Not intensive

Proposed method 0.96 0.87 Not intensive

Fig. 8. Relation between real and predicted number of 

cells for the 3 methods.
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we see how the computer vision based techniques

really fail when the number of the cells surpasses

30. The state-of-the-art method also has some

difficulties when the number of the cells increases.

In Fig. 9, we show the differences between the

real number and the computed number of the cells.

The difference is computed by comparing the ac-

tual number of the cells in the image and the

counted number, as described by the following

equation

(10)

where RN is the real number of the cells provided

by the ground truth and ON represents the number

outputted by the classifiers. As we can strongly

remark in Fig. 9, the divergence between our pre-

dicted numbers and the real values starts at 40

cells. But, still the difference is around 2, which

is really small. We clearly see that the complexity

of the counting problem increases at the same time

as the number of the cells.

But, in the opposite way, the fact of using the

segmentation masks as prior information for

counting the cells really depreciates the accuracy

of the regressor, as we can remark with the results

of the state-of-the-art deep learning based method

proposed in [9]. When we surpass the 30 cells, the

divergence between the actual number of cells and

the predicted number of that method is really

important. This is a critical point where our method

shows better improvement. As we could have ex-

pected, the divergence is really high for the com-

puter vision techniques used in [15].

Another comparative study can be seen in Fig.

10 where we show the prediction error of the three

different methods. This evaluation metric was

computed by using the following equation

(11)

where RN is the real number of the cells provided

by the ground truth, ON represents the number

outputted by the classifiers. We can see that our

proposed method (2.18 % of prediction error) out-

performed the conventional computer vision based

method (22.32 %) and also the state-of-the-art

deep learning method (7.99 %).

6. CONCLUSION

Segmentation is one of the most important steps

for the fully understanding of images of biological

processes. We have proposed a segmentation

scheme of the biological images. We have used a

pyramidal deep convolutional autoencoder in order

to reconstruct the segmentation masks. And we

have proposed a novel cell counting method by us-

Fig. 9. Difference between real and predicted number 

of cells for the 3 methods. Fig. 10. Prediction error of the three methods.
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ing the latent representations learned by the net-

work as the inputs of a neural network based

regressor. Our method significantly reduces the

trade-off between the semantic and spatial fea-

tures by allowing to capture features from different

scales. The results show that the proposed method

can perform a very pleasant segmentation and,

most importantly, outperforms the state-of-the-

art method in case of cell counting.
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