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MODIFIED SUBGRADIENT EXTRAGRADIENT

ALGORITHM FOR PSEUDOMONOTONE EQUILIBRIUM

PROBLEMS

Dang Van Hieu

Abstract. The paper introduces a modified subgradient extragradient
method for solving equilibrium problems involving pseudomonotone and

Lipschitz-type bifunctions in Hilbert spaces. Theorem of weak conver-

gence is established under suitable conditions. Several experiments are
implemented to illustrate the numerical behavior of the new algorithm

and compare it with a well known extragradient method.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Let
f : H×H → < be a bifunction with f(x, x) = 0 for all x ∈ C. The equilibrium
problem (EP) for the bifunction f on C is stated as follows:

(1) Find x∗ ∈ C such that f(x∗, y) ≥ 0, ∀y ∈ C.
Let us denote EP (f, C) the solution set of EP (1). Mathematically, EP (1) can
be considered a generalization of many mathematical models including varia-
tional inequality problems, optimization problems and fixed point problems
[2, 20, 21, 27]. EPs have been considered by many authors in recent years, see,
e.g., [1, 9, 13–17, 19, 28, 30, 31]. Some notable methods for EPs have been pro-
posed such as: proximal point methods (PPM) [26], auxiliary problem principle
methods [24] and gap function methods [25].

The PPM is often used for monotone EPs and this method is based on a
regularized equilibrium problem which is strongly monotone and so the solution
of it is unique and can be found more easily than solutions of the original
problem. Solution approximations generated by the PPM can converge finitely
or asymptotically to some solution of EP.

One of the first methods for solving EPs based on the auxiliary problem
principle is the proximal-like method introduced early in [11]. The auxiliary
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problem principle, see, e.g., [24, Proposition 2.1], is an equivalent reformula-
tion of the equilibrium problem thanks to a suitable choice of some bifunction.
This reformulation gives us a new problem which is called the auxiliary equi-
librium problem (AEP), and of course it is solved more easily than the original
one. From the AEP with suitable choice of auxiliary bifunction, we can con-
struct iterative sequences converging to some solution of the given problem
EP under certain conditions. Recently, the convergence of the proximal-like
method in [11] has been further extended and investigated in [30] under differ-
ent assumptions that equilibrium bifunctions are pseudomonotone and satisfy
the Lipschitz-type condition. More precisely, the method in [30] generates two
sequences {xn} , {yn} as follows:

(EGM)

{
yn = arg min

{
λf(xn, y) + 1

2 ||xn − y||
2 : y ∈ C

}
,

xn+1 = arg min
{
λf(yn, y) + 1

2 ||xn − y||
2 : y ∈ C

}
,

where λ > 0 is a suitable parameter. The methods in [11, 30] are also called
extragradient methods (EGM) due to the results of Korpelevich in [22]. Un-
der some suitable conditions imposed on parameters and bifunctions, solution
approximation sequences generated by the extragradient method are proved
to be convergent to some solution of EP. In recent years, the extragradi-
ent methods have received a lot of attention by several authors, see, e.g., in
[5,14,15,17,28,31]. The advantage of the extragradient method [11,30] seems to
be more easy to solve numerically than the PPM. Moreover, it can be applied
to more general class of pseudomonotone bifunctions.

At this stage, it is emphasized that the EGM requires to solve two optimiza-
tion problems on the feasible set C and to compute two values of bifunction
f at two current approximations xn and yn. These can be costly and affect
the efficiency of the used method if the bifunction f and the feasible set C
have complex structures. Then, in this paper, we wish first to modify method
(EGM) in the following form (see, Algorithm 2.4 in Sect. 2),

(MEGM)


xn+1 = argmin

y∈Tn

{λf(yn, y) + 1
2 ||xn − y||

2},

yn+1 = argmin
y∈C

{λf(yn, y) + 1
2 ||xn+1 − y||2},

where Tn is a half space constructed suitably. Since Tn is a half space, the first
optimization program in method (MEGM) can be solved effectively by using
the available methods of convex quadratic programming [3, Chapter 8]. In the
special case where problem (EP) is a variational inequality problem then it is a
projection on a half space, and so, it is computed explicitly. Moreover, contrary
to algorithm (EGM), per iteration method (MEGM) only requires to compute
a value of bifunction f at current approximation yn. The second purpose of
the paper is to study the numerical behavior of algorithm (MEGM) and also
to compare it with the well known algorithm (EGM) presented in [11,30].
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This paper is organized as follows: In Section 2, we collect some definitions
and preliminary results for further use, and then, present the new algorithm
in more details. Section 3 deals with analyzing the convergence of the pro-
posed algorithm. Section 4 reports several numerical results on test problems
to illustrate the convergence of the algorithm and compare it with algorithm
(EGM).

2. Preliminaries

Let C be a nonempty closed convex subset of H. We begin with some
concepts of monotonicity of a bifunction [2, 27]. A bifunction f : H ×H → <
is said to be:

(i) strongly monotone on C if there exists a constant γ > 0 such that

f(x, y) + f(y, x) ≤ −γ||x− y||2, ∀x, y ∈ C;

(ii) monotone on C if

f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;

(iii) pseudomonotone on C if

f(x, y) ≥ 0 =⇒ f(y, x) ≤ 0, ∀x, y ∈ C;

(iv) to satisfy Lipschitz-type condition on C if there exist two positive con-
stants c1, c2 such that

f(x, y) + f(y, z) ≥ f(x, z)− c1||x− y||2 − c2||y − z||2, ∀x, y, z ∈ C.

From the definitions above, it is obvious that (i) =⇒ (ii) =⇒ (iii). For solving
problem EP (1), we assume that bifunction f : H × H → < satisfying the
following conditions.

Condition 1
(A1) f is pseudomonotone on C with f(x, x) = 0 for all x ∈ C;
(A2) f satisfies Lipschitz-type condition on H with two constants c1 and c2;
(A3) f(·, y) is sequentially weakly upper semicontinuous on C for each fixed

point y ∈ C, i.e., if {xn} ⊂ C is a sequence converging weakly to x ∈ C, then
lim supn→∞ f(xn, y) ≤ f(x, y);

(A4) f(x, ·) is convex and subdifferentiable on H for every fixed x ∈ C.
It is easy to show that under Condition 1, the solution set EP (f, C) of EP

(1) is closed and convex, see for instance [30]. In this paper, we assume that
EP (f, C) is nonempty.

Note that if f(x, y) = 〈Ax, y − x〉, where A : H → H is a Lipschitz continu-
ous operator, i.e., there exists a number L > 0 such that

||Ax−Ay|| ≤ L||x− y||, ∀x, y ∈ H,

then f satisfies the Lipschitz-type condition with c1 = c2 = L/2, see [17,
Corollary 2].
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Next, we review the definition of the metric projection and several its prop-
erties. For every x ∈ H, the metric projection PCx of x onto C is defined
by

PCx = arg min {‖y − x‖ : y ∈ C} .
Since C is nonempty, closed and convex, PCx exists and is unique. From the
definition of the metric projection, it is easy to show that PC : H → C has the
following characterizations [12].

Lemma 2.1. (i) PC is 1-inverse strongly monotone on H, i.e., for all x, y ∈ H,

〈PCx− PCy, x− y〉 ≥ ‖PCx− PCy‖2 .

(ii) For all y ∈ H,x ∈ C,

(2) ‖x− PCy‖2 + ‖PCy − y‖2 ≤ ‖x− y‖2 .

(iii) z = PCx if and only if

(3) 〈x− z, z − y〉 ≥ 0, ∀y ∈ C.

The normal cone NC to C at a point x ∈ C is defined by

NC(x) = {w ∈ H : 〈w, x− y〉 ≥ 0,∀y ∈ C} .

For proving the convergence of the proposed algorithm, we need the following
two technical lemmas.

Lemma 2.2 ([8]). Let C be a nonempty subset of H and let {xn} be a sequence
in H. Suppose that, for every x ∈ C, there exists a summable sequence {εn} in
[0,+∞) such that

||xn+1 − x||2 ≤ ||xn − x||2 + εn, ∀n ≥ 0,

and that every weak cluster point of {xn} is in C. Then {xn} converges weakly
to a point p ∈ C.

Lemma 2.3 ([29]). Let C be a nonempty closed convex subset of H and g :
C → < be a convex, subdifferentiable and lower semicontinuous function on C.
Then, x∗ is a solution to the following convex problem

min {g(x) : x ∈ C}

if and only if

0 ∈ ∂g(x∗) +NC(x∗),

where ∂g(·) denotes the subdifferential of g and NC(x∗) is the normal cone of C
at x∗.

Now, we are in a position to present a modification of algorithm (EGM) in
[30] for equilibrium problems. The algorithm is described as follows:
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Algorithm 2.4 (Modified subgradient extragradient algorithm for EPs).

Initialization. Choose x0 ∈ H, y0 ∈ C, a control parameter λ > 0, and
compute

x1 = argmin
y∈C

{λf(y0, y) + 1
2 ||x0 − y||

2},

y1 = argmin
y∈C

{λf(y0, y) + 1
2 ||x1 − y||

2}.

Iterative step. For n ≥ 1,

Step 1. Select wn ∈ ∂2f(yn−1, yn) = ∂f(yn−1, ·)(yn) and construct a half-
space

Tn = {z ∈ H : 〈xn − λwn − yn, z − yn〉 ≤ 0} .
Step 2. Solve two strongly convex optimization programs

xn+1 = argmin
y∈Tn

{λf(yn, y) + 1
2 ||xn − y||

2},

yn+1 = argmin
y∈C

{λf(yn, y) + 1
2 ||xn+1 − y||2}.

Stopping criterion. If yn+1 = yn = xn+1 then stop.

Remark 2.5. In the special case where problem (EP) is a variational inequality
problem, i.e., f(x, y) = 〈Ax, y − x〉, where A : H → H is an operator, then
Algorithm 2.4 becomes the following algorithm: Choose x0 ∈ H, y0 ∈ C and
compute x1 = PC(x0 − λAy0), y1 = PC(x1 − λAy0) and

(4)

 Tn = {z ∈ H : 〈xn − λAyn−1 − yn, z − yn〉 ≤ 0} ,
xn+1 = PTn

(xn − λAyn),
yn+1 = PC(xn+1 − λAyn),

which is studied in [23]. Then, Algorithm 2.4 can be considered a generaliza-
tion of the result in [23] from variational inequalities to equilibrium problems.
It is also worth mentioning here that algorithm (4) only requires to compute
a value of A at yn and a projection on C for yn+1. The first projection for
xn+1 is inherently explicit. For this reason, we can say that algorithm (4) is al-
most equivalent to the classical gradient method. Another algorithm, namely
the subgradient extragradient algorithm, which has a same feature to algo-
rithm (4), has been studied in [4–7]. However, contrary to algorithm (4), the
subgradient extragradient method needs to find two values of cost value A at
current approximations. It is emphasized here that the geometric meaning of
the half-space Tn has been described and explained in details in [4–7].

Remark 2.6. In Initialization of Algorithm 2.4, if C is expressed in an explicit
form, the choice y0 ∈ C is an easy task. However, if C is given in an implicit
form, for instance, a generalized convex feasible set [32, Definition 4.1], it is
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difficult to choose immediately a point y0 ∈ C. In this case, we see that C
can be expressed by the fixed point set of a mapping [32, Proposition 4.2b]).
Then, we can use a fixed point iterative procedure to find this starting point.
In Section 4, we have also implemented an experiment (Experiment 5) in this
case.

In order to establish the convergence of Algorithm 2.4 in the next section,
we consider the stepsize λ satisfying the following condition.

Condition 2

0 < λ <
1

2(c2 + 2c1)
,

where c1 and c2 are two Lipschitz-type constants of f .

3. Main results

In this section, we will analyze the convergence of Algorithm 2.4. We start
with the following lemma which plays an important role in proving the conver-
gence of the proposed algorithm.

Lemma 3.1. Let {xn}, {yn} be two sequences generated by Algorithm 2.4.
Then

(i) λ (f(yn, y)− f(yn, yn+1)) ≥ 〈xn+1 − yn+1, y − yn+1〉 for all y ∈ C and
n ≥ 0.

(ii) For all x∗ ∈ EP (f, C), the following estimate holds

||xn+1 − x∗||2 ≤ ||xn − x∗||2 − (1− 2λc2)||yn − xn+1||2 + 4λc1||yn−1 − xn||2

− (1− 4λc1)||xn − yn||2.(5)

Proof. (i) From the definition of yn+1 and Lemma 2.3,

0 ∈ ∂2
(
λf(yn, y) +

1

2
||xn+1 − y||2

)
(yn+1) +NC(yn+1).

Thus, there exist w ∈ ∂2f(yn, yn+1) := ∂f(yn, ·)(yn+1) and w̄ ∈ NC(yn+1) such
that

λw + yn+1 − xn+1 + w̄ = 0.

Hence, it follows from the definition of NC that

(6)
〈xn+1 − yn+1, y − yn+1〉 = λ 〈w, y − yn+1〉+ 〈w̄, y − yn+1〉

≤ λ 〈w, y − yn+1〉 , ∀y ∈ C.
By w ∈ ∂2f(yn, yn+1),

(7) 〈w, y − yn+1〉 ≤ f(yn, y)− f(yn, yn+1), ∀y ∈ C.
From relations (6) and (7), we obtain

λ (f(yn, y)− f(yn, yn+1)) ≥ 〈xn+1 − yn+1, y − yn+1〉 , ∀y ∈ C.
(ii) It follows from the definition of Tn and xn+1 ∈ Tn that

〈xn − λwn − yn, xn+1 − yn〉 ≤ 0.
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Thus

(8) 〈xn − yn, xn+1 − yn〉 ≤ λ 〈wn, xn+1 − yn〉 .
Since wn ∈ ∂2f(yn−1, yn),

(9) 〈wn, y − yn〉 ≤ f(yn−1, y)− f(yn−1, yn), ∀y ∈ H.
Relations (8) and (9) with y = xn+1 come to

(10) 〈xn − yn, xn+1 − yn〉 ≤ λ(f(yn−1, xn+1)− f(yn−1, yn)).

From the definition of xn+1, by arguing as in the proof of (i) we obtain

λ (f(yn, y)− f(yn, xn+1)) ≥ 〈xn − xn+1, y − xn+1〉 , ∀y ∈ Tn.
This with y = x∗ implies that

(11) λ (f(yn, x
∗)− f(yn, xn+1)) ≥ 〈xn − xn+1, x

∗ − xn+1〉 .
Since x∗ ∈ EP (f, C), f(x∗, yn) ≥ 0. Thus, from the pseudomonotonicity of f ,
we obtain f(yn, x

∗) ≤ 0. It follows from relation (11) that −λf(yn, xn+1) ≥
〈xn − xn+1, x

∗ − xn+1〉 . Thus

(12) 〈xn − xn+1, xn+1 − x∗〉 ≥ λf(yn, xn+1).

From the Lipschitz-type condition of f ,

f(yn, xn+1) ≥ (f(yn−1, xn+1)−f(yn−1, yn))−c1||yn−1−yn||2−c2||yn−xn+1||2.
This together with relations (10) and (12) implies that

(13)
〈xn − xn+1, xn+1 − x∗〉

≥ 〈xn − yn, xn+1 − yn〉 − c1λ||yn−1 − yn||2 − c2λ||yn − xn+1||2.
We have the following facts:

〈xn − xn+1, xn+1 − x∗〉 =
1

2

{
||xn − x∗||2 − ||xn − xn+1||2 − ||xn+1 − x∗||2

}
,

〈xn − yn, xn+1 − yn〉 =
1

2

{
||xn − yn||2 + ||xn+1 − yn||2 − ||xn − xn+1||2

}
.

Combining the last two equalities with relation (13), we obtain

||xn+1 − x∗||2 ≤ ||xn − x∗||2 + 2c1λ||yn−1 − yn||2 − (1− 2c2λ)||yn − xn+1||2

− ||xn − yn||2.(14)

From the triangle inequality and the Cauchy-Schwarz inequality,

(15)
||yn−1 − yn||2 ≤ (||yn−1 − xn||+ ||xn − yn||)2

≤ 2
(
||yn−1 − xn||2 + ||xn − yn||2

)
.

Two inequalities (14) and (15) imply that

||xn+1 − x∗||2 ≤ ||xn − x∗||2 − (1− 2c2λ)||yn − xn+1||2 + 4c1λ||yn−1 − xn||2

− (1− 4c1λ)||xn − yn||2. �

The next lemma gives us a stopping criterion of Algorithm 2.4.
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Lemma 3.2. If Algorithm 2.4 terminates at some iterative step n, then xn+1 ∈
EP (f, C).

Proof. If yn+1 = yn = xn+1, then, from Lemma 3.1(i), hypothesis (A1) and
λ > 0, we obtain f(yn, y) ≥ 0 for all y ∈ C. Thus, xn+1 = yn ∈ EP (f, C). �

Thanks to Lemma 3.2, if Algorithm 2.4 stops, then a solution of EP (1) can
be found. Otherwise, we have the following result.

Lemma 3.3. Let {xn}, {yn} be two (infinite) sequences generated by Algorithm
2.4. Then

(i) The sequence {xn} is bounded and

lim
n→∞

||xn − yn|| = lim
n→∞

||xn − yn−1|| = lim
n→∞

||yn − yn−1|| = 0.

(ii) If p is a weak cluster point of {xn}, then p ∈ EP (f, C).

Proof. (i) For each fixed K ≥ 1, we consider inequalities (5) for n = 1, 2, . . . ,K.
Summing up them, we obtain

||xK+1 − x∗||2 ≤ ||x0 − x∗||2 + 4c1λ1||y0 − x1||2

−
K∑
n=1

(1− 2c2λ− 4λc1)||yn−1 − xn||2(16)

−
K∑
n=1

(1− 4λc1)||xn − yn||2.

From Condition 2, 1 − 2c2λ − 4λc1 > 0 and so 1 − 4λc1 > 0. These together
with inequality (16) imply that

{
||xK+1 − x∗||2

}
K≥1 is bounded. Thus, {xn}

is also bounded. Hence, it follows from inequality (16) that

(17)

∞∑
n=1

(1−2c2λ−4λc1)||yn−1−xn||2 <∞ and

∞∑
n=1

(1−4λc1)||xn−yn||2 <∞.

Therefore, from Condition 2, we obtain

lim
n→∞

||xn − yn|| = lim
n→∞

||xn − yn−1|| = 0.

Thus, it follows from the triangle inequality that

lim
n→∞

||yn − yn−1|| = 0.

(ii) Suppose that {xm} is a subsequence of {xn} such that xm ⇀ p. Since
||xm − ym|| → 0, ym ⇀ p. Since C is closed and convex in H, C is weakly
closed. It follows from {ym} ⊂ C that p ∈ C. From Lemma 3.1(i) with n = m
and the Lipschitz-type condition of f , we have

λf(ym, y) ≥ λf(ym, ym+1) + 〈xm+1 − ym+1, y − ym+1〉
≥ λ {f(ym−1, ym+1)− f(ym−1, ym)} − λc1||ym−1 − ym||2

− λc2||ym − ym+1||2 + 〈xm+1 − ym+1, y − ym+1〉 .(18)
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It also follows from Lemma 3.1(i) with n = m− 1 that

λ (f(ym−1, y)− f(ym−1, ym)) ≥ 〈xm − ym, y − ym〉 , ∀y ∈ C.

This with y = ym+1 leads to

(19) λ (f(ym−1, ym+1)− f(ym−1, ym)) ≥ 〈xm − ym, ym+1 − ym〉 .

Combining relations (18) and (19), we have

λf(ym, y) ≥ 〈xm − ym, ym+1 − ym〉 − λc1||ym−1 − ym||2 − λc2||ym − ym+1||2

+ 〈xm+1 − ym+1, y − ym+1〉 , ∀y ∈ C.(20)

Passing to the limit in inequality (20) as m → ∞ and using hypothesis (A3),
Lemma 3.3(i) and Condition 2, we obtain f(p, y) ≥ 0 for all y ∈ C or p ∈
EP (f, C). �

Finally, we have the following main result.

Theorem 3.4. Let C be a nonempty closed convex subset of H and f be a
function satisfying Condition 1. Suppose that parameter λ satisfies Condition
2. In addition, the solution set EP (f, C) is nonempty. Then, two sequences
{xn} and {yn} generated by Algorithm 2.4 converge weakly to some point p ∈
EP (f, C). Moreover, p = lim

n→∞
PEP (f,C)(xn).

Proof. It follows from Lemma 3.1(ii) and Condition 2 that

||xn+1 − x∗||2 ≤ ||xn − x∗||2 + 4λc1||yn−1 − xn||2,

or

(21) ||xn+1 − x∗||2 ≤ ||xn − x∗||2 + εn, ∀n ≥ 0, ∀x∗ ∈ EP (f, C),

where εn = 4λc1||yn−1 − xn||2. It follows from (17) that
∑∞
n=1 εn < ∞.

Moreover, from Lemma 3.3(ii), we see that every weak cluster point of {xn}
is in EP (f, C). These together with (21) and Lemma 2.2 imply that the
whole sequence {xn} converges weakly to some point p ∈ EP (f, C). From
Lemma 3.3(i), we conclude that {yn} also converges weakly to p. Let an =
||xn−PEP (f,C)xn||2. From the definition of the metric projection and relation
(21), we have

||xn+1−PEP (f,C)xn+1||2 ≤ ||xn+1−PEP (f,C)xn||2 ≤ ||xn−PEP (f,C)xn||2 + εn,

or an+1 ≤ an + εn. Thus, it follows from
∑∞
n=1 εn < ∞ that there exists

the limit of the sequence {an} [8, Lemma 3.1]. Put un = PEP (f,C)xn. From
Lemma 2.1(ii) and relation (21), for all m > n, we have

||un − um||2 = ||PEP (f,C)xn − PEP (f,C)xm||2

≤ ||xm − PEP (f,C)xn||2 − ||xm − PEP (f,C)xm||2

≤ ||xm−1 − PEP (f,C)xn||2 + εm−1 − ||xm − PEP (f,C)xm||2

≤ · · ·
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≤ ||xn − PEP (f,C)xn||2 +

m−1∑
k=n

εk − ||xm − PEP (f,C)xm||2

= an − am +

m−1∑
k=n

εk.(22)

Passing to the limit in inequality (22) as m,n→∞, we obtain limm,n→∞ ||un−
um||2 = 0. Thus, {un} is a Cauchy sequence, or there exists the limit

lim
n→∞

un = u ∈ EP (f, C).

It follows from un = PEP (f,C)xn and Lemma 2.1(iii) that 〈p− un, xn − un〉 ≤ 0.

Passing to the limit in the last inequality as n → ∞, we obtain ||p − u||2 =
〈p− u, p− u〉 ≤ 0. Thus, u = p or p = lim

n→∞
PEP (f,C)xn. �

4. Numerical experiments

In this section, we perform several numerical examples to illustrate the con-
vergence of the proposed algorithm. The first two examples are to study the
numerical behavior of Algorithm 2.4 on two test problems for different stepsizes
of λ. The last example presents a comparison of the proposed algorithm with
an extended extragradient method (EGM) to EPs in [30].

Example 1. We first consider the bifunction f in <m (m = 50) defined by

f(x, y) = 〈Px+Qy + q, y − x〉 ,

where q ∈ <m and P, Q are two matrices of order m such that Q is symmetric
and positive semidefinite and Q − P is negative semidefinite. The feasible
set C is the intersection of two balls defined by B1 =

{
x ∈ <m : ||x||2 ≤ 4

}
and B2 =

{
x ∈ <m : ||x− (2, 0, 0, . . . , 0)||2 ≤ 1

}
. In all the experiments, f

satisfies Condition 1 with c1 = c2. Thus, Condition 2 becomes 0 < λ <
1

6c1
. Five stepsizes of λ are chosen to study the behavior of Algorithm 2.4 as

λ ∈
{

1
6.001c1

, 1
10c1

, 1
100c1

, 1
500c1

, 1
1000c1

}
(Experiments 1, 2 and 3). The starting

points here are x0 = (1, 1, . . . , 1)T and y0 = (2, 0, . . . , 0)T ∈ C. The first
optimization program in Step 2 of Algorithm 2.4 is a quadratic convex problem
over a half-space (polyhedral convex set) while the second one is not. We use
respectively two functions quadprog and fmincon in Matlab 7.0 Optimization
Toolbox to solve these auxiliary optimization subproblems. All the programs
are written in Matlab version 7.0. and performed on a PC Desktop Intel(R)
Core(TM) i5-3210M CPU @ 2.50GHz 2.50 GHz, RAM 2.00 GB.

Experiment 1. Suppose that q = 0 and P = Q is a diagonal matrix with
diagonal entries being 1, 2, . . . ,m. In this case, the bifunction f satisfies Con-
dition 1 for all c1, c2 > 0 and we here chose c1 = c2 = 5. It is easy to
imply that the exact solution of EP is x∗ = (1, 0, . . . , 0)T . We use the sequence
Dn = ||xn − x∗||2, n = 1, 2, . . . to check the convergence of {xn} generated by
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Algorithm 2.4. The convergence of {Dn} to 0 implies that the sequence {xn}
converges to the solution x∗ of EP.

Figure 1 shows the results of Dn generated by Algorithm 2.4 with the chosen
stepsizes of λ for the first 2000 iterations. In this figure, the y-axis represents
for the value of Dn while the x-axis represents for the number of iterations
n. We see that the smaller the stepsize of λ is, the slower the convergence of
Algorithm 2.4 is. More precisely, the convergence of the sequence {Dn} with
λ = 1

6.001c1
is the best while that one with λ = 1

1000c1
is the slowest. The

execution times in second (resp. with the given stepsizes of λ above) are 93.72,
88.10, 88.67, 85.33 and 85.81s.
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Figure 1. Behavior of Dn = ||xn − x∗||2 for Algorithm 2.4
in Experiment 1 for the first 2000 iterations (Execution times
(CPU in second) are 93.72, 88.10, 88.67, 85.33 and 85.81s,
resp.)

Experiment 2. All entries of q are generated randomly and uniformly in [−m,m].
Two matrices P and Q are also generated randomly1 such that they satisfy
all conditions of the problem. In this case, two Lipschitz-type constants are
c1 = c2 = ||Q − P ||/2 [30]. Since the solution of the problem is not known,
we use the sequence Fn = ||yn+1 − yn||2 + ||yn+1 − xn+1||2, n = 0, 1, . . . to

1Two matrices P, Q are generated randomly as follows: we randomly choose λ1k ∈
[0,m], λ2k ∈ [−m, 0], k = 1, . . . ,m. Set Q̂, T̂ as two diagonal matrices with eigenvalues

{λ1k}mk=1 and {λ2k}mk=1, respectively. Then, we make a positive semidefinite matrix Q and

a negative semidefinite matrix T by using Q̂ and T̂ with two random orthogonal matrices,

respectively. Finally, we set P = Q− T .
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check the convergence of {xn} to the solution of the problem. Note that, from
Lemma 3.2, if yn+1 = yn = xn+1 then xn+1 is a solution of the problem. The
convergence of {Fn} to 0 can be considered as the sequence {xn} converging to
the solution of the problem. Figure 2 describes the behavior of {Fn} generated
by Algorithm 2.4 for given stepsizes of λ in the first 2000 iterations. This figure
shows that the convergence of Fn with λ = 1

6.001c1
is better than the conver-

gence of Fn with others. As the previous experiment, the smaller the stepsize
is, the slower the convergence of Fn is. The execution times are respectively
102.50, 103.49, 96.97, 92.55 and 92.08s.
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Figure 2. Behavior of Fn = ||yn+1 − yn||2 + ||yn+1 − xn+1||2
for Algorithm 2.4 in Experiment 2 for the first 2000 iterations
(Execution times (CPU in second) are 102.50, 103.49, 96.97,
92.55 and 92.08s, resp.)

Example 2. We consider the nonsmooth bifunction f in <m (m = 50) defined
by

f(x, y) = 〈Px+Qy + q, y − x〉+ h(y)− h(x),

where P, Q, q are defined as in Example 1 and h(x) =
∑m
j=1 hj(xj) with

hj(xj) = max
{
h̄j(xj), ĥj(xj)

}
,

h̄j(xj) = ājx
2
j + b̄jxj + c̄j ,

ĥj(xj) = âjx
2
j + b̂jxj + ĉj ,

and āj , b̄j , c̄j , âj , b̂j , ĉj are real numbers such that āj > 0, âj > 0 for all j =
1, . . . ,m. The feasible set C is a box defined by C={x ∈ <m : xmin ≤ x ≤ xmax},
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where xmin = (0, 0, . . . , 0)T and xmax = (5, 5, . . . , 5)T . The bifunction f is
generalized from the Nash-Cournot market equilibrium model investigated in
[10, 30] . The function h(x) is nonsmooth and convex. The bifunction f also
satisfies Condition 1 with c1 = c2 = ||Q−P ||/2. The function h is subdifferen-
tiable and its subdifferential at x is given by ∂h(x) = (∂h1(x1), . . . , ∂hm(xm))T ,
where

∂hj(xj) =


2ājxj + b̄j if h̄j(xj) > ĥj(xj),[
2ājxj + b̄j , 2âjxj + b̂j

]
if h̄j(xj) = ĥj(xj),

2âjxj + b̂j , if h̄j(xj) < ĥj(xj).

Experiment 3. In an experiment, P, Q, q are generated randomly as in Example
1. The numbers āj , âj are generated uniformly and randomly in [1,m] and

b̄j , c̄j , b̂j , ĉj are in [−m,m]. The starting points are here chosen as x0 =
(1, 1, . . . , 1)T and y0 = (0, 0, . . . , 0)T . The optimization problems are still solved
effectively by the function fmincon in Matlab 7.0 Optimization Toolbox. Figure
3 describes the behavior of {Fn} generated by Algorithm 2.4 for given stepsizes
of λ in the first 5000 iterations. There is a slight difference to the previous
experiments. More precisely, although the sequences {Fn} with λ = 1

6.001c1

and λ = 1
10c1

are more fastly convergent than others in the early iterations,

but they only obtain to the approximation error 10−10 while {Fn} with other
stepsizes can obtain to a smaller approximation one as 10−15. The execution
time for λ = 1

6.001c1
is significantly less than that one for other stepsizes of λ.

Example 3. Consider the bifunction f defined as in Example 1 with P, Q, q
being generated randomly. In this example, we perform two experiments
to compare the proposed algorithm with an extended extragradient method
(EGM) to EPs in [30]. Note that in method (EGM) if yn = xn then xn ∈
EP (f, C). We have used the following stopping criterions:

EGM : ||xn − yn|| ≤ TOL,(23)

Alg. 2.4 : ||yn − yn+1||+ ||xn+1 − yn|| ≤ TOL.(24)

For each u ∈ C, we consider the proximal mapping of f(u, ·) with λ > 0,

proxλf(u,·)(v) := arg min

{
λf(u, y) +

1

2
||v − y||2 : y ∈ C

}
, v ∈ H.

It is emphasized that if v = proxλf(v,·)(v) then v ∈ EP (f, C). The stopping

criterion (23) means that ||xn − proxλf(xn,·)(xn)|| ≤ TOL. We do not use
this stopping criterion for Algorithm 2.4 because we do not want to compute
proxλf(xn,·)(xn) extra. From the triangle inequality, we have

(25) ||yn − proxλf(yn,·)(yn)|| ≤ ||yn − yn+1||+ ||yn+1 − proxλf(yn,·)(yn)||.

From the definitions of yn+1 (in Algorithm 2.4) and the (firm) nonexpansive-
ness of proximal mapping, we obtain ||yn+1−proxλf(yn,·)(yn)|| ≤ ||xn+1− yn||.
This together with relations (24) and (25) implies that ||yn−proxλf(yn,·)(yn)|| ≤
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Figure 3. Behavior of Fn = ||yn+1 − yn||2 + ||yn+1 − xn+1||2
for Algorithm 2.4 in Example 2 in the first 5000 iterations
(Execution times (CPU in second) are 382.62, 624.97, 859.92,
835.66, and 762.01s, resp.)

||yn − yn+1|| + ||xn+1 − yn|| ≤ TOL. The last inequality means that the ap-
proximation solution generated by Algorithm 2.4 is not worse than the solution
generated by the EGM if we measure the quality of the solution by the proximal
error bound.

Experiment 4. Consider three feasible sets as

C1 = <m+ ,
C2 =

{
x ∈ <m+ : x1 + x2 + · · ·+ xm = m

}
,

C3 = {x ∈ <m : Ax ≤ b} ,

where A ∈ <k×m (k = 100) is a matrix with its entries being generated ran-
domly in [−m,m] and b ∈ <k+ is a positive vector with its entries in [1,m].

TOL is chosen as TOL = 10−6, the stepsize is λ = 1
10c1

, the starting point

y0 is y0 = (m, 0, 0, . . . , 0)T with C1, C2 and y0 = (0, 0, . . . , 0)T with C3. The
comparison includes the number of iterations (iter.) and the execution time in
second (time). Table 1 shows the results for x0 = (1, 1, . . . , 1)T and for differ-
ent spaces <m while Table 2 is in <100 for several different starting points x0.
The numerical results show that the proposed algorithm has an advantage of
execution time over the EGM, especially in larger dimensional spaces.
Experiment 5. In this experiment, we consider feasible set as a generalized
convex feasible set [32, Definition 4.1]. Let K, C1, . . . , Cl be nonempty closed
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Table 1. Results in Experiment 4 for different spaces <m.

m C = C1 C = C2 C = C3

Alg. 2.4 EGM Alg. 2.4 EGM Alg. 2.4 EGM
iter. time iter. time iter. time iter. time iter. time iter. time

10 49 1.63 50 1.57 49 1.09 50 1.17 38 0.90 39 1.02
50 82 4.69 82 6.06 120 5.61 121 6.94 68 3.85 66 6.08
100 78 6.05 76 8.37 129 9.07 129 12.26 101 14.21 102 24.13
150 104 13.79 103 19.82 143 27.97 144 47.73 133 38.53 133 68.14
300 100 38.62 101 62.47 156 240.39 156 472.87 145 257.62 146 503.38

Table 2. Results in Experiment 4 for different starting points x0.

x0 C = C1 C = C2 C = C3

Alg. 2.4 EGM Alg. 2.4 EGM Alg. 2.4 EGM
iter. time iter. time iter. time iter. time iter. time iter. time

(0) 94 6.95 95 9.85 150 11.29 150 15.88 119 15.42 120 25.50
(1) 84 6.28 84 9.03 150 10.67 150 15.66 114 13.61 116 24.41
rand. 124 9.65 124 14.39 152 11.62 152 16.05 143 18.90 144 30.70
rand. 129 9.85 130 14.41 172 13.52 173 18.89 154 19.96 154 32.66
rand. 128 10.07 129 14.71 164 12.49 165 17.45 155 21.49 156 34.91

convex subsets of <m such that K ∩
(
∩lj=1Cj

)
= ∅ and at least one K, Cj , j =

1, . . . , l (l = 100, 200) is bounded. For each x ∈ <m, we set

Φ(x) =
1

2

l∑
j=1

wjd
2(x,Cj),

where {wj}lj=1 ⊂ (0, 1),
∑l
j=1 wj = 1 and d(x,Cj) = min {||x− y|| : y ∈ Cj}.

Consider the feasible set C which is called a generalized convex feasible set
[32, Definition 4.1] as follows:

(26) C =

{
x ∈ K : Φ(x) = min

y∈K
Φ(y)

}
.

Note that C is a nonempty closed convex subset of K, see [32, Proposition 4.2
and Remark 4.3]. For an experiment, we chose wj = 1

l and

K = {x ∈ <m : ||x− a|| ≤ 4.5} ,
C1 = {x ∈ <m : ||x|| ≤ 1} ,
Cj =

{
x ∈ <m :

〈
cTj , x

〉
≤ bj

}
, j = 2, . . . , l,

where a = (10, 0, . . . , 0)T ∈ <m, and real numbers bj and vectors cj are gener-
ated randomly with their entries in [1,m]. It is easy to see that the first opti-
mization subproblem in our algorithm is a convex quadratic problem because
Tn is a half-space. A question is how to solve other optimization subproblems
on C when the feasible set C is formulated in implicit form (26). We would
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like to implement an experiment in this case. Now, we set

T = PK

(1− β)I + β

l∑
j=1

wjPCj

 , 0 < β ≤ 2,

then T is nonexpansive (also, quasi-nonexpansive) and C = Fix(T ) is the fixed
point set of T , see [32, Proposition 4.2b and Remark 4.3c]. Thus, optimiza-
tion problems over C become optimization ones over the fixed point set of T .
We have chosen β = 1 and solved these optimization problems by the subgra-
dient method in [18, Algorithm 4.1] to obtain their solution approximations
for tolerance TOL with a posterior stopping criterion. For a starting point y0
in C = Fix(T ), we have used the Mann fixed point iterative procedure with
tolerance TOL. Table 3 shows the numerical results with the starting point
x0 = (1, 1, . . . , 1)T , the stepsize λ = 1

8c1
and stopping criterions (23) and (24)

for respectively Algorithm 2.4 and the EGM. It is not easy to describe the
solution of EP in this case. We have used the sequence {||xn − T (xn)||} to
check whether {xn} converges to a point in Fix(T ) = C or not2. Figure 4 de-
scribes the behaviors of {||xn − T (xn)||} for Algorithm 2.4 and the EGM with
m = 5, l = 200 and TOL = 10−8.

As Experiment 4, in this experiment Algorithm 2.4 also has an advantage of
execution time over algorithm EGM. A reasonable explanation here is the fact
that over each iteration algorithm EGM must require to proceed two values of
bifunction f at xn and yn while Algorithm 2.4 only needs to compute a value
of f at yn. Besides, the solving of the first optimization program in Step 2
of Algorithm 2.4, which is with only one linear constraint from Tn, is simpler
than the one in algorithm EGM coming from the constraints of feasible set C.

Table 3. Results in Experiment 5 with λ = 1
8c1

.

l = 100 l = 200
Alg. 2.4 EGM Alg. 2.4 EGM

m TOL iter. time iter. time iter. time iter. time
5 10−5 6 0.74 5 0.88 6 1.11 5 1.52

10−8 9 1.01 8 1.32 11 1.84 9 2.31
10 10−5 7 0.95 6 1.33 7 2.18 6 3.01

10−8 10 1.34 9 1.92 10 2.94 9 4.35
30 10−5 7 2.35 8 3.83 8 4.35 8 6.99

10−8 11 3.19 11 5.15 12 6.28 12 9.95
50 10−5 8 3.10 8 4.57 8 6.61 9 10.97

10−8 11 4.01 12 6.58 12 9.39 13 14.99

2||x− T (x)|| = 0 if and only if x ∈ Fix(T ) = C
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Figure 4. Behaviors of {||xn − T (xn)||} for Algorithm 2.4
and the EGM.

5. Conclusions

The paper has proposed a modified subgradient extragradient method for
approximating solutions of equilibrium problems in Hilbert spaces. The weakly
convergent theorem is established under standard assumptions imposed on
equilibrium bifunctions. This paper has studied the numerical behavior of the
proposed algorithm over several test problems and also compared it with an
existing extragradient method. The performed results have illustrated several
advantages of the new algorithm over algorithm (EGM).
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[8] P. L. Combettes, Quasi-Fejérian analysis of some optimization algorithms, in Inherently

parallel algorithms in feasibility and optimization and their applications (Haifa, 2000),
115–152, Stud. Comput. Math., 8, North-Holland, Amsterdam, 2001.

[9] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J.

Nonlinear Convex Anal. 6 (2005), no. 1, 117–136.
[10] J. Contreras, M. Klusch, and J. B. Krawczyk, Numerical solution to Nash-Cournot

equilibria in coupled constraint electricity markets, EEE Trans. Power Syst. 19 (2004),

195–206.
[11] S. D. Fl̊am and A. S. Antipin, Equilibrium programming using proximal-like algorithms,

Math. Programming 78 (1997), no. 1, Ser. A, 29–41.

[12] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive
Mappings, Monographs and Textbooks in Pure and Applied Mathematics, 83, Marcel

Dekker, Inc., New York, 1984.
[13] D. V. Hieu, A parallel hybrid method for equilibrium problems, variational inequalities

and nonexpansive mappings in Hilbert space, J. Korean Math. Soc. 52 (2015), no. 2,

373–388.
[14] , Parallel extragradient-proximal methods for split equilibrium problems, Math.

Model. Anal. 21 (2016), no. 4, 478–501.

[15] , Halpern subgradient extragradient method extended to equilibrium problems,
Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Math. RACSAM 111 (2017), no. 3,

823–840.

[16] D. V. Hieu, P. K. Anh, and L. D. Muu, Modified hybrid projection methods for finding
common solutions to variational inequality problems, Comput. Optim. Appl. 66 (2017),

no. 1, 75–96.
[17] D. V. Hieu, L. D. Muu and P. K. Anh, Parallel hybrid extragradient methods for pseu-

domonotone equilibrium problems and nonexpansive mappings, Numer. Algorithms 73

(2016), no. 1, 197–217.
[18] H. Iiduka, Convergence analysis of iterative methods for nonsmooth convex optimization

over fixed point sets of quasi-nonexpansive mappings, Math. Program. 159 (2016), no. 1-

2, Ser. A, 509–538.
[19] A. N. Iusem, G. Kassay, and W. Sosa, On certain conditions for the existence of solutions

of equilibrium problems, Math. Program. 116 (2009), no. 1-2, Ser. B, 259–273.

[20] I. Konnov, Combined Relaxation Methods for Variational Inequalities, Lecture Notes in
Economics and Mathematical Systems, 495, Springer-Verlag, Berlin, 2001.

[21] , Equilibrium Models and Variational Inequalities, Mathematics in Science and
Engineering, 210, Elsevier B. V., Amsterdam, 2007.

[22] G. M. Korpelevich, An extragradient method for finding saddle points and for other
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