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I. Introduction 

Recently, convolutional neural network (CNN) 

is widely used in object recognition using deep 

learning due to its simple architecture and high 

classification accuracies [1]. The CNN training 

requires three essential inputs of a network 
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Abstract 

The purpose of training a convolutional neural network (CNN) is to obtain weight factors that give high 

classification accuracies. The initial values of hyper-parameters affect the training results, and it is important to 

train a CNN with a suitable hyper-parameter set of a learning rate, a batch size, the initialization of weight factors, 

and an optimizer. We investigate the effects of a single hyper-parameter while others are fixed in order to obtain a 

hyper-parameter set that gives higher classification accuracies and requires shorter training time using a proposed 

VGG-like CNN for training since the VGG is widely used. The CNN is trained for four datasets of CIFAR10, 

CIFAR100, GTSRB and DSDL-DB. The effects of the normalization and the data transformation for datasets are also 

investigated, and a training scheme using merged datasets is proposed.  
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architecture, a dataset and hyper-parameters 

such as a learning rate, a batch size, and initial 

weight factors. The hyper-parameters for the 

training process affect results of the training, that 

is, the weight factors. Unfortunately, since a set of 

parameters for optimization depends on the 

network model and the dataset, it is generally 

chosen arbitrarily or based on prior experiences 

and is adjusted by trial and error. 

The learning rate (LR) initialization is the major 

problem in the gradient descent algorithm and its 

variants, which are the most popular in training 

CNNs, because it affects the convergence of 

CNNs [2, 3]. Training a deep neural network for a 

dataset with a large number of data often results 

in the 'out of memory' error. The batch gradient 

descent method that updates the weight factors 

after training the entire training dataset is 

expensive in both memory demand and 

computation [4]. The mini-batch gradient 

descent method performs better due to noises in 

the update direction allowing for jumping across 

the local minima [5]. However, the choice of good 

batch sizes depends closely on the network 

architecture and dataset, and is determined 

according to designer’s experience. The 

initialization of weight factors affects significantly 

on training deep neural networks due to 

cumulative sum and big gradient magnitude at the 

final layer. After determining the 

hyper-parameters, the optimization algorithm 

affects the training process.  

In this paper, we present the effects of 

hyper-parameters on training CNNs for various 

datasets to obtain optimal hyper-parameters and 

propose a training method to obtain a pre-trained 

weight factors for better training results. The 

effects of each hyper-parameter are analyzed in 

terms of the classification accuracy (CA) of the 

trained network and the training time for various 

datasets. The proposed method of obtaining 

pre-trained weight factors gives better training 

results by training a CNN with merged datasets 

first and then applying the weight factors to train 

the CNN for each dataset. It is useful when we 

have more than one dataset or other datasets with 

similar input dimensions are available.  

 Ⅱ. Hyper-parameters for training CNN 

A well-known scheme to initialize weight 

factors is loading the weight factors of a 

similar network trained with a complex dataset, 

and then re-training with the target dataset [6]. 

Inspired by the work, we merge two or more 

datasets including the datasets of interest to 

get a pre-trained set of weight factors.  

The completeness of a dataset affects the 

training results of a CNN. Raw image samples 

that are included in the dataset may be 

diversified through lots of transformation 

algorithms such as scaling, cropping, 

horizontal or vertical flipping, and brightness 

or contract adjustment. A raw sample may be 

pre-processed according to a randomly 

selected transformation including no 

transformation when it is chosen for training. A 
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dataset is augmented through the 

pre-processing which improves the training 

results of a CNN [7]. 

Raw image samples in a dataset include 

redundant information such as noises or 

outliers that deteriorate the training results 

[8]. The normalization reduces the fluctuation 

and weakens noises and outliers to increase 

the CA and to reduce the training time. 

Ⅲ. Experimental results 

A. Experimental environments 

The experiments were performed on a PC 

with 6GB GPU and Ubuntu 14.04 using 

Tensorflow library. In order to investigate the 

effects of hyper-parameters on training 

results, we design a CNN inspired by VGG-16. 

Fig. 1(a) shows the VGG-16 network of 

5-convolutional layers for the input images 

with a resolution of 224x224. We modified the 

VGG-16 network for the input images of 32x32 

and 64x64 resolutions as shown in Fig. 1(b). 

The model A and B have the same architecture 

except for the number of convolutional layers 

to process the images with different 

resolutions as shown in Fig. 1(b). The 

complexity of the proposed CNN is much 

simpler although it resembles the VGG-16. 

 We compared the proposed model with the 

VGG-16 in terms of the CA, the total number of 

weight factors and an inference time for 4 

datasets shown in Table 1. The experimental 

results show that the proposed models are 

trained faster by 2-3 times with the smaller 

number of weight factors by 2.3 - 2.8 times 

than VGG-16 as shown in Table 2. The results 

have been scaled so that the proposed model 

has the value of 100%. The CAs are slightly 

smaller than those of VGG-16. 

B. Experimental results 

Table 3 shows the effects of the initial LR on 

the CNN training. The first column represents 

the initial values of LR in range of [0.001, 0.1], 

the second and the third columns indicate the 

maximum CA and the number of epochs (NE), 

respectively, when the loss function becomes 

stable. The CA after training tends to increase 

as the initial LR is decreased from 0.1 to 
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Fig. 1. Network architecture of VGG-16 and 

proposed CNN models. 

Table 1. Dataset summary 

Dataset 

No. of 

Training 

samples 

No. of 

Test 

samples 

No. of 

categories 

/image size 

Objects 

CIFAR10 50,000 10,000 10/32x32 
Animals, 

transportations 

CIFAR100 50,000 10,000 100/32x32 
plants, household 

devices 

GTSRB 39,209 12,630 43/64x64 German traffic signs 

DSDL-DB 35,413 15,177 7/64x64 On-road objects. 
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0.01/0.005, and then they decrease slightly 

as the initial LR is decreased further. The 

initial LR values for the maximum CA depend 

on the characteristics of the datasets. The 

proposed network reaches the peak CA at 

LR=0.01 for CIFAR10 and GTSRB and at 

LR=0.005 for DSDL-DB and CIFAR100, 

respectively. When the initial LR is too large, 

the loss function tends to diverge because of 

the chain of big update, which blows up the 

total loss. 

 The batch size (BS) is the number of 

training samples for mini-batches as described 

in the previous chapter. The BS is chosen from 

8 to 256 by doubling the previous number. 

Table 4 shows the effects of batch sizes in 

training. The values in the NE/TT columns are 

the number of epochs at which the CA becomes 

the maximum, and the training time (TT) in 

minutes corresponding to the NE. The CA 

increases fast as the BS is increased and 

becomes almost constant or slightly decreases 

as the BS is rise further. The batch size of 64 

or 32 gives the best training results. 

 The loss functions for CIFAR10 and 

CIFAR100 with the BS of 8 started to diverge 

in the first epoch and the LR was decreased in 

the early stage. Practically, the networks for 

CIFAR10 and CIFAR100 with the BS of 8 were 

trained with very small LR and it took long time 

for the loss function to converge. 

Table 4 also shows that it takes less NE for 

training as the BS decreases while the lengths 

of actual training time are not proportional to 

the NE. In SGD style training, the training time 

is dominantly consumed by data transfer 

between CPUs and GPUs for batch loading and 

returning gradient results and by computing 

time at GPUs while the time for loading raw 

data are necessary for the initial queue 

formation only. Besides, the number of weight 

factor updates with a small BS is larger than 

that with a large BS. Therefore, the data 

communication traffic for training networks 

with a smaller BS is heavier, and the training 

time per epoch increases as the BS is 

decreased. Therefore, the actual training time 

Table 2. Comparison results of VGG-16 and 

proposed model 
Dataset Performance [%] VGG-16 Proposed 

CIFAR10 

32x32 

Accuracy 90.6 88.7 

Training time 220.0 100.0 

# of weight factors 243.4 100.0 

CIFAR100 

32x32 

Accuracy 62.7 61.3 

Training time 219.9 100.0 

# of weight factors 243.3 100.0 

GTSRB 

64x64 

Accuracy 97.7 97.2 

Training time 308.8 100.0 

# of weight factors 280.2 100.0 

DSDL-DB 

64x64 

Accuracy 90.8 90.1 

Training time 303.7 100.0 

# of weight factors 238.0 100.0 

Table 3. Effects of learning rate in training 

LR 
CIFAR10 CIFAR100 GTSRB DSDL-DB 

CA[%] NE CA[%] NE CA[%] NE CA[%] NE 

0.1 54.6 160 16.8 120 34.7 30 63.0 155 

0.05 79.2 280 43.3 140 72.5 45 83.0 190 

0.01 88.4 215 56.4 130 96.0 40 88.4 180 

0.005 87.4 290 58.2 185 95.5 45 89.6 195 

0.001 85.3 410 56.2 300 93.5 50 86.0 205 
Table 4. Effects of batch size in training 

BS 

CIFAR10 CIFAR100 GTSRB DSDL-DB 

CA 

[%] 

NE/ 

TT[m] 

CA 

[%] 

NE/ 

TT[m] 

CA 

[%] 

NE/ 

TT[m] 

CA  

[%] 

NE/ 

TT[m] 

8 73.5* 200/484 39.9* 170/178 81.2 4/8 84.7 74/19 

16 83.5 43/52 43.7 128/73 89.1 10/11 86.5 94/15 

32 88.4 132/45 56.4 140/43 96.0 20/19 88.4 110/13 

64 89.5 145/35 58.4 205/41 96.1 25/22 87.9 120/15 

128 87.6 175/37 56.9 215/44 96.1 40/35 87.2 150/17 

256 86.9 200/40 55.1 255/51 96.1 45/39 86.9 19/23 
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decreases and then increases as the BS is 

increased in general. We find that the TT is the 

smallest for the highest CA except for GTSRB. 

The weight factors are initialized to random 

numbers in normal distributions with various 

standard deviations (SD) in order to investigate 

the effects of initial weight factors. Fig. 2 

shows the results when the SD is changed from 

0.01 to 0.11. We failed in training the network 

when the SD was too small or too large 

because the weight factors seldom changed 

during the back-propagation. In the range of 

trainable SD, the CA tends to decrease or to 

stay at a similar value because small weight 

factors cause high gradients and have high 

chances to jump over many local minima by 

gradient updates. 

Another way of initializing weight factors 

employs pre-trained ones. We merged 

DSDL-DB and GTSRB, and trained the CNN to 

obtain a pre-trained weight factors. The CNN 

was trained again for each dataset using the 

pre-trained weight factors. The CAs for 

DSDL-DB after training using the pre-trained 

weight factors from the merged dataset are 

enhanced by 5% and 1.7% compared with the 

results using random numbers and GTSRB, 

respectively. On the other hand, the CA after 

training CNN for GTSRB using the pre-trained 

weight factors from DSDL-DB and the merged 

dataset is increased by 0.9% and 1.2%, 

respectively. DSDL-DB can be a superset of 

GTSRB as shown in Table 2 although the 

number of samples of traffic signs in GTSRB is 

larger than that in DSDL-DB. Therefore, the 

pre-trained weight factors from DSDL-DB can 

enhance the results of training for GTSRB 

while the opposite case does not work. 

However, the proposed approach does not 

work for CIFAR10 and CIFAR100. We presume 

the reason that the categories of the two 

datasets are unrelated, or the proposed 

network is not appropriate for CIFAR100 since 

the accuracies for CIFAR100 are much lower 

than those of the others. 

The Fig. 3 shows the effects of data 

pre-processing of transformation and 

normalization in training the proposed CNN. 

The normalization removes the outliers, 

centralizing and scaling sample to clarify 

salient edges in signs. The training with the 

normalization improves the accuracies by 9.5 

~ 29.9% compared with the training using raw 

data. The training after the data transformation 

improves the accuracies by 13.9 ~ 31.4% 

compared with the training using raw data. The 

effect of the transformation is larger than the 
Fig. 2. Effects of standard deviation of normal 

distribution in weight factor initialization. 
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normalization except for the GTSRB. GTSRB 

already includes transformed data samples and 

the effect of transformation is weakened. If the 

normalization and the transformation are 

combined, the accuracies are increased by 17 

~ 40.1% as shown in Fig. 3. The results of 

training after the normalization and the 

transformation combined are better than the 

training with single processing for all datasets. 

The computation time for data pre-processing 

is negligible in training because the 

computation is made while queueing of data 

although the data pre-processing is very 

expensive computation. 

Fig. 3. The effects of data pre-processing of 

transformation and normalization examined in 

four cases.  

Fig. 4 shows the loss functions according to 

training steps. The loss functions for CIFAR10 

and CIFAR100 with the momentum converge 

much faster and the final values are smaller 

than those without the momentum. The CAs for 

CIFAR10 and CIFAR100 increase from 83.4% 

to 88.4% and from 48.1% to 56.4%, 

respectively. On the other hand, although the 

loss function of DSDL-DB with momentum 

decreases faster than that without momentum, 

the improvement is not as large as that of 

CIFAR10 or CIFAR100. Consequently, the 

increase of CA is not large (from 86.1% to 

88.5%). The loss function of GTSRB without 

the momentum decreases fast enough and the 

loss function and the CA for GTSRB with the 

momentum are almost the same as those 

without the momentum. The additional training 

time per epoch due to the momentum is 

negligible (1.3-1.7s/epoch) compared with the 

total training time per epoch (10-50m/epoch). 

As a result, it is usually a good choice to train 

CNNs with the momentum. 

Fig. 4. Loss functions of training model by SGD 

and momentum algorithm. 

Ⅳ. Conclusion 

The effects of hyper-parameters on training 

the proposed CNN model are presented, and a 

training method to a training strategy for better 

training results is proposed. We obtain suitable 

initial hyper-parameters which are the initial 

learning rate in range of [0.01, 0.005], the 

batch size of 32 or 64, and the standard 

deviation of 0.05 with the momentum optimizer. 

The pre-trained weight factors obtained from 
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a merged dataset are useful in many cases. 

The data pre-processing increases the 

classification accuracies greatly and need to 

be applied before training. The momentum 

optimizer accelerates training CNNs. 
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