
ISSN:1226-7244 (Print)
ISSN:2288-243X (Online) j.inst.Korean.electr.electron.eng.Vol.22,No.1,14∼20,March 2018

논문번호 18-01-03 http://dx.doi.org/10.7471/ikeee.2018.22.1.14

14

(14)

* Dept. of Electronic Engineering, Soongsil University, Seoul, Korea.

★Corresponding author

E-mail: chlee@ssu.ac.kr, Tel:+82-2-820-0710,

※ Acknowledgment

This work was supported by the MOTIE (Ministry of Trade, Industry & Energy (10080568) and KSRC(Korea Semiconductor Research

Consortium) support program for the development of the future semiconductor device. The EDA tools were supported by IDEC.

Manuscript received Feb. 20, 2018; revised Mar. 24, 2018; accepted Mar. 29, 2018

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License

(http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium,

provided the original work is properly cited.

I. Introduction

Recently, convolutional neural network (CNN)

is widely used in object recognition using deep

learning due to its simple architecture and high

classification accuracies [1]. The CNN training

requires three essential inputs of a network

Effects of Hyper-parameters and Dataset on CNN Training

Huu Nhan Nguyen*, Chanho Lee *
★

Abstract

The purpose of training a convolutional neural network (CNN) is to obtain weight factors that give high

classification accuracies. The initial values of hyper-parameters affect the training results, and it is important to

train a CNN with a suitable hyper-parameter set of a learning rate, a batch size, the initialization of weight factors,

and an optimizer. We investigate the effects of a single hyper-parameter while others are fixed in order to obtain a

hyper-parameter set that gives higher classification accuracies and requires shorter training time using a proposed

VGG-like CNN for training since the VGG is widely used. The CNN is trained for four datasets of CIFAR10,

CIFAR100, GTSRB and DSDL-DB. The effects of the normalization and the data transformation for datasets are also

investigated, and a training scheme using merged datasets is proposed.

Key words: Hyper-parameter, CNN, classification accuracy, weight factor, neural network training

--

http://creativecommons.org/licenses/by-nc/3.0

Effects of Hyper-parameters and Dataset on CNN Training 15

(15)

architecture, a dataset and hyper-parameters

such as a learning rate, a batch size, and initial

weight factors. The hyper-parameters for the

training process affect results of the training, that

is, the weight factors. Unfortunately, since a set of

parameters for optimization depends on the

network model and the dataset, it is generally

chosen arbitrarily or based on prior experiences

and is adjusted by trial and error.

The learning rate (LR) initialization is the major

problem in the gradient descent algorithm and its

variants, which are the most popular in training

CNNs, because it affects the convergence of

CNNs [2, 3]. Training a deep neural network for a

dataset with a large number of data often results

in the 'out of memory' error. The batch gradient

descent method that updates the weight factors

after training the entire training dataset is

expensive in both memory demand and

computation [4]. The mini-batch gradient

descent method performs better due to noises in

the update direction allowing for jumping across

the local minima [5]. However, the choice of good

batch sizes depends closely on the network

architecture and dataset, and is determined

according to designer’s experience. The

initialization of weight factors affects significantly

on training deep neural networks due to

cumulative sum and big gradient magnitude at the

final layer. After determining the

hyper-parameters, the optimization algorithm

affects the training process.

In this paper, we present the effects of

hyper-parameters on training CNNs for various

datasets to obtain optimal hyper-parameters and

propose a training method to obtain a pre-trained

weight factors for better training results. The

effects of each hyper-parameter are analyzed in

terms of the classification accuracy (CA) of the

trained network and the training time for various

datasets. The proposed method of obtaining

pre-trained weight factors gives better training

results by training a CNN with merged datasets

first and then applying the weight factors to train

the CNN for each dataset. It is useful when we

have more than one dataset or other datasets with

similar input dimensions are available.

 Ⅱ. Hyper-parameters for training CNN

A well-known scheme to initialize weight

factors is loading the weight factors of a

similar network trained with a complex dataset,

and then re-training with the target dataset [6].

Inspired by the work, we merge two or more

datasets including the datasets of interest to

get a pre-trained set of weight factors.

The completeness of a dataset affects the

training results of a CNN. Raw image samples

that are included in the dataset may be

diversified through lots of transformation

algorithms such as scaling, cropping,

horizontal or vertical flipping, and brightness

or contract adjustment. A raw sample may be

pre-processed according to a randomly

selected transformation including no

transformation when it is chosen for training. A

16 j.inst.Korean.electr.electron.eng.Vol.22,No.1,14∼20,March 2018

(16)

dataset is augmented through the

pre-processing which improves the training

results of a CNN [7].

Raw image samples in a dataset include

redundant information such as noises or

outliers that deteriorate the training results

[8]. The normalization reduces the fluctuation

and weakens noises and outliers to increase

the CA and to reduce the training time.

Ⅲ. Experimental results

A. Experimental environments

The experiments were performed on a PC

with 6GB GPU and Ubuntu 14.04 using

Tensorflow library. In order to investigate the

effects of hyper-parameters on training

results, we design a CNN inspired by VGG-16.

Fig. 1(a) shows the VGG-16 network of

5-convolutional layers for the input images

with a resolution of 224x224. We modified the

VGG-16 network for the input images of 32x32

and 64x64 resolutions as shown in Fig. 1(b).

The model A and B have the same architecture

except for the number of convolutional layers

to process the images with different

resolutions as shown in Fig. 1(b). The

complexity of the proposed CNN is much

simpler although it resembles the VGG-16.

 We compared the proposed model with the

VGG-16 in terms of the CA, the total number of

weight factors and an inference time for 4

datasets shown in Table 1. The experimental

results show that the proposed models are

trained faster by 2-3 times with the smaller

number of weight factors by 2.3 - 2.8 times

than VGG-16 as shown in Table 2. The results

have been scaled so that the proposed model

has the value of 100%. The CAs are slightly

smaller than those of VGG-16.

B. Experimental results

Table 3 shows the effects of the initial LR on

the CNN training. The first column represents

the initial values of LR in range of [0.001, 0.1],

the second and the third columns indicate the

maximum CA and the number of epochs (NE),

respectively, when the loss function becomes

stable. The CA after training tends to increase

as the initial LR is decreased from 0.1 to

conv3-64
conv3-64

conv3-128
conv3-128

conv3-256
conv3-256
conv3-256

conv3-512
conv3-512
conv3-512

conv3-512
conv3-512
conv3-512

FC - 4096
FC - 4096

Soft-max
FC - 1000

conv3-256

conv3-256

Max-pooling

ReLU

ReLU

conv3-256
ReLU

Input 224x224

VGG-16

conv3-32
conv3-32

conv3-64
conv3-64

conv3-128
conv3-128

FC 1 - 1024

conv3-32
conv3-32

conv3-64
conv3-64

conv3-128
conv3-128

conv3-256
conv3-256

FC 2 - 512

Soft-max layer

Model A Model B

Input 32x32 Input 64x64

Number of Classes

(a) VGG-16 (b) Proposed CNN

Fig. 1. Network architecture of VGG-16 and

proposed CNN models.

Table 1. Dataset summary

Dataset

No. of

Training

samples

No. of

Test

samples

No. of

categories

/image size

Objects

CIFAR10 50,000 10,000 10/32x32
Animals,

transportations

CIFAR100 50,000 10,000 100/32x32
plants, household

devices

GTSRB 39,209 12,630 43/64x64 German traffic signs

DSDL-DB 35,413 15,177 7/64x64 On-road objects.

Effects of Hyper-parameters and Dataset on CNN Training 17

(17)

0.01/0.005, and then they decrease slightly

as the initial LR is decreased further. The

initial LR values for the maximum CA depend

on the characteristics of the datasets. The

proposed network reaches the peak CA at

LR=0.01 for CIFAR10 and GTSRB and at

LR=0.005 for DSDL-DB and CIFAR100,

respectively. When the initial LR is too large,

the loss function tends to diverge because of

the chain of big update, which blows up the

total loss.

 The batch size (BS) is the number of

training samples for mini-batches as described

in the previous chapter. The BS is chosen from

8 to 256 by doubling the previous number.

Table 4 shows the effects of batch sizes in

training. The values in the NE/TT columns are

the number of epochs at which the CA becomes

the maximum, and the training time (TT) in

minutes corresponding to the NE. The CA

increases fast as the BS is increased and

becomes almost constant or slightly decreases

as the BS is rise further. The batch size of 64

or 32 gives the best training results.

 The loss functions for CIFAR10 and

CIFAR100 with the BS of 8 started to diverge

in the first epoch and the LR was decreased in

the early stage. Practically, the networks for

CIFAR10 and CIFAR100 with the BS of 8 were

trained with very small LR and it took long time

for the loss function to converge.

Table 4 also shows that it takes less NE for

training as the BS decreases while the lengths

of actual training time are not proportional to

the NE. In SGD style training, the training time

is dominantly consumed by data transfer

between CPUs and GPUs for batch loading and

returning gradient results and by computing

time at GPUs while the time for loading raw

data are necessary for the initial queue

formation only. Besides, the number of weight

factor updates with a small BS is larger than

that with a large BS. Therefore, the data

communication traffic for training networks

with a smaller BS is heavier, and the training

time per epoch increases as the BS is

decreased. Therefore, the actual training time

Table 2. Comparison results of VGG-16 and

proposed model
Dataset Performance [%] VGG-16 Proposed

CIFAR10

32x32

Accuracy 90.6 88.7

Training time 220.0 100.0

of weight factors 243.4 100.0

CIFAR100

32x32

Accuracy 62.7 61.3

Training time 219.9 100.0

of weight factors 243.3 100.0

GTSRB

64x64

Accuracy 97.7 97.2

Training time 308.8 100.0

of weight factors 280.2 100.0

DSDL-DB

64x64

Accuracy 90.8 90.1

Training time 303.7 100.0

of weight factors 238.0 100.0

Table 3. Effects of learning rate in training

LR
CIFAR10 CIFAR100 GTSRB DSDL-DB

CA[%] NE CA[%] NE CA[%] NE CA[%] NE

0.1 54.6 160 16.8 120 34.7 30 63.0 155

0.05 79.2 280 43.3 140 72.5 45 83.0 190

0.01 88.4 215 56.4 130 96.0 40 88.4 180

0.005 87.4 290 58.2 185 95.5 45 89.6 195

0.001 85.3 410 56.2 300 93.5 50 86.0 205
Table 4. Effects of batch size in training

BS

CIFAR10 CIFAR100 GTSRB DSDL-DB

CA

[%]

NE/

TT[m]

CA

[%]

NE/

TT[m]

CA

[%]

NE/

TT[m]

CA

[%]

NE/

TT[m]

8 73.5* 200/484 39.9* 170/178 81.2 4/8 84.7 74/19

16 83.5 43/52 43.7 128/73 89.1 10/11 86.5 94/15

32 88.4 132/45 56.4 140/43 96.0 20/19 88.4 110/13

64 89.5 145/35 58.4 205/41 96.1 25/22 87.9 120/15

128 87.6 175/37 56.9 215/44 96.1 40/35 87.2 150/17

256 86.9 200/40 55.1 255/51 96.1 45/39 86.9 19/23

18 j.inst.Korean.electr.electron.eng.Vol.22,No.1,14∼20,March 2018

(18)

decreases and then increases as the BS is

increased in general. We find that the TT is the

smallest for the highest CA except for GTSRB.

The weight factors are initialized to random

numbers in normal distributions with various

standard deviations (SD) in order to investigate

the effects of initial weight factors. Fig. 2

shows the results when the SD is changed from

0.01 to 0.11. We failed in training the network

when the SD was too small or too large

because the weight factors seldom changed

during the back-propagation. In the range of

trainable SD, the CA tends to decrease or to

stay at a similar value because small weight

factors cause high gradients and have high

chances to jump over many local minima by

gradient updates.

Another way of initializing weight factors

employs pre-trained ones. We merged

DSDL-DB and GTSRB, and trained the CNN to

obtain a pre-trained weight factors. The CNN

was trained again for each dataset using the

pre-trained weight factors. The CAs for

DSDL-DB after training using the pre-trained

weight factors from the merged dataset are

enhanced by 5% and 1.7% compared with the

results using random numbers and GTSRB,

respectively. On the other hand, the CA after

training CNN for GTSRB using the pre-trained

weight factors from DSDL-DB and the merged

dataset is increased by 0.9% and 1.2%,

respectively. DSDL-DB can be a superset of

GTSRB as shown in Table 2 although the

number of samples of traffic signs in GTSRB is

larger than that in DSDL-DB. Therefore, the

pre-trained weight factors from DSDL-DB can

enhance the results of training for GTSRB

while the opposite case does not work.

However, the proposed approach does not

work for CIFAR10 and CIFAR100. We presume

the reason that the categories of the two

datasets are unrelated, or the proposed

network is not appropriate for CIFAR100 since

the accuracies for CIFAR100 are much lower

than those of the others.

The Fig. 3 shows the effects of data

pre-processing of transformation and

normalization in training the proposed CNN.

The normalization removes the outliers,

centralizing and scaling sample to clarify

salient edges in signs. The training with the

normalization improves the accuracies by 9.5

~ 29.9% compared with the training using raw

data. The training after the data transformation

improves the accuracies by 13.9 ~ 31.4%

compared with the training using raw data. The

effect of the transformation is larger than the
Fig. 2. Effects of standard deviation of normal

distribution in weight factor initialization.

 Effects of Hyper-parameters and Dataset on CNN Training 19

(19)

normalization except for the GTSRB. GTSRB

already includes transformed data samples and

the effect of transformation is weakened. If the

normalization and the transformation are

combined, the accuracies are increased by 17

~ 40.1% as shown in Fig. 3. The results of

training after the normalization and the

transformation combined are better than the

training with single processing for all datasets.

The computation time for data pre-processing

is negligible in training because the

computation is made while queueing of data

although the data pre-processing is very

expensive computation.

Fig. 3. The effects of data pre-processing of

transformation and normalization examined in

four cases.

Fig. 4 shows the loss functions according to

training steps. The loss functions for CIFAR10

and CIFAR100 with the momentum converge

much faster and the final values are smaller

than those without the momentum. The CAs for

CIFAR10 and CIFAR100 increase from 83.4%

to 88.4% and from 48.1% to 56.4%,

respectively. On the other hand, although the

loss function of DSDL-DB with momentum

decreases faster than that without momentum,

the improvement is not as large as that of

CIFAR10 or CIFAR100. Consequently, the

increase of CA is not large (from 86.1% to

88.5%). The loss function of GTSRB without

the momentum decreases fast enough and the

loss function and the CA for GTSRB with the

momentum are almost the same as those

without the momentum. The additional training

time per epoch due to the momentum is

negligible (1.3-1.7s/epoch) compared with the

total training time per epoch (10-50m/epoch).

As a result, it is usually a good choice to train

CNNs with the momentum.

Fig. 4. Loss functions of training model by SGD

and momentum algorithm.

Ⅳ. Conclusion

The effects of hyper-parameters on training

the proposed CNN model are presented, and a

training method to a training strategy for better

training results is proposed. We obtain suitable

initial hyper-parameters which are the initial

learning rate in range of [0.01, 0.005], the

batch size of 32 or 64, and the standard

deviation of 0.05 with the momentum optimizer.

The pre-trained weight factors obtained from

20 j.inst.Korean.electr.electron.eng.Vol.22,No.1,14∼20,March 2018

(20)

a merged dataset are useful in many cases.

The data pre-processing increases the

classification accuracies greatly and need to

be applied before training. The momentum

optimizer accelerates training CNNs.

References

[1] K. Alex, I. Sutskever, and G. E. Hinton,

“Imagenet classification with deep

convolutional neural networks,” in Proc. of

Neural Information Processing Systems, pp.

1097-1105, 2012.

[2] Y. Bengio, “Practical recommendations for

gradient-based training of deep architecture,”

Neural Networks: Tricks of the Trade, Springer

Berlin Heidelberg, pp. 437-478, 2012.

[3] T. M. Breuel, "The Effects of

Hyperparameters on SGD Training of Neural

Networks," https://arxiv.org/abs/1508.02788

[4] N. Ketkar, Deep learning with Python,

Apress, 2017.

[5] M. Moller, “Supervised learning on large

redundant training sets,” in Proc. of Neural

Networks for Signal Processing, pp. 79-89,

1992.

[6] M.D. Zeiler and R. Fergus, “Visualizing and

Understanding Convolutional Networks,” in

Proc. of 13th European Conference on Computer

Vision, pp. 818-833, 2014.

[7] Y. Xu, R. Jia and L. Mou, G. Li, Y. Chen, Y. Lu,

and Z. Jin, “Improved relation classification by

deep recurrent neural networks with data

augmentation,” in Proc. of 26th International

Conference on Computational Linguistics

(COLING), pp. 1461-1470, 2016.

[8] A. Rusiecki, M. Kordos, T. Kaminski, and K.

Gren, “Training Neural Networks on Noisy

Data,” in Proc. of 13th ICAISC, pp. 131-142,

2014.

BIOGRAPHY

Huu Nhan Nguyen (Member)

2012: BS degree in Computer

Engineering, University of

Information Technology,

Hochiminh, Vietnam.

2016: MS student in Dept. of

Electronic Engineering,

Soongsil University

Chanho Lee (Member)

1987: BS in Electronic

Engineering, Seoul

National University.

1989: MS in Electronic

Engineering, Seoul

National University.

1994: Ph.D in Electrical Engineering,

UCLA

<Research Area> SoC on-chip-network,

Memory controller, Image Pattern

recognition

