Midazolam을 이용한 의식전정시 flumazenil의 투여경로에 따른 생장후 및 행동양상의 비교 연구

김현식 · 이창섭 · 이상호
조선대학교 치과대학 소아치과학교실 · 구강생물학 연구소

국문초록

본 연구의 목적은 midazolam을 이용한 의식전정 시 갈항재인 flumazenil의 투여경로에 따른 효과와 안전성을 평가하기 위함이다. 연구대상으로는 22~24세의 건강한 15명의 자원자를 이용하였으며, 그룹은 midazolam 0.2mg/Kg을 비강내 복용하여 진정하였으며, midazolam 투여 후 40분 후 갈항재인 flumazenil 0.2mg을 정맥 내 투여 및 비강 내 투여하였다.

각 투여경로의 안전성과 효과를 평가하기 위해 다음과 같은 관찰이 실시되었다. 대상의 생장후를 관찰하기 위해 pulse oxymeter(Nellcor symphony N-3000, Nellcor Puritan CO,. USA)를 이용하여 SaO2 및 맥박수를 관찰하였고, 전자혈압계(Heartcare 200, National CO., Japan)을 이용하여 이완기 및 수축기 혈압을 관찰하였다. 또한 실험대상의 주관적 평가를 위해 visual analogue scale(VAS)을 이용하여, 전정, 수면, 파로 그리고 태도에 대해 주관적인 평가를 실시하였다. 모든 대상은 특이한 부작용없이 회복되었다.

연구결과를 요약하면 다음과 같다.
1. 비강내 본무된 flumazenil은 정맥내 투여된 flumazenil에 비해 빨른 회복을 보였으나, 곤이정맥내 투여에 비해 같은 수면상태에 빠졌다.
2. 비강내 투여된 flumazenil 및 정맥내 투여된 경우 모두 주의할 부작용 및 생장후의 약화는 관찰되지 않았다.

회복의 목적으로 비강내 본무된 flumazenil의 결과로 미루어 본 때, midazolam을 이용한 의식전정시 flumazenil의 비강 내 본무를 통해 보다 안전하고, 효과적인 의식전정 치료제가 가능하다고 사료된다. 하지만, flumazenil의 적절한 용량 및 효과를 얻기 위해, midazolam과 flumazenil의 혈장농도를 평가하는 약물동등학적 연구가 계속되어야 하리라 사료된다.

주요어 : Midazolam, Flumazenil, 비강내 본무

I. 서론

의사소통을 이용한 행동조절이 곤란하거나, 협조능력이 부족한 어린이의 치과치료를 증진 약물로 이용한 의식전정이 요구된다. 아울러 최근 장애의 치료와의 비중이 증가함에 따라, 약물 이 이용한 의식전정에 치료효과를 실시하는 경우가 증가하고 있으며, 이에 이용되는 약물에 대한 연구 또한 많은 발전을 기울였다. 수면전정제인 barbiturates, chlorohydrate, 항불안제인 benzodiazepine, 그리고 opioids와 antihistamine 등이 의식전정에 사용되어 왔으며, short acting benzodiazepine으로 1964년에 diazepam, 그리고 1976년 midazolam (imidazobenzodiazepine)이 개발된 이래 이에 대한 관심이 증가하고 있다.

Benzodiazepine들은 마취유도 외에 진정목적으로도 널리 이용되고 있으며, 이중 midazolam(imidazobenzodiazepine)은 수용성이 우수하여 다양한 경로의 투여가 가능하다. 이의 약리학적 치료효과는 CNS에 γ-aminobutyric acid(GABA) 수용체에 잘 결합하여 chloride channel을 활성화시킴으로써 나타난다. 이의 특이성 결합체로는 phystostigmine와 methylxantine 등이 있으며, 독성 결합체로는 Hunkeler 등에 의해 최초로 합성된 flumazenil이 있다.

Flumazenil은 γ-aminobutyric acid(GABA) 수용체에서 benzodiazepine에 대한 상정 결합체로 작용한다. 생리적인 pH 범위에서 약물로 활성으로 동상 pH 4.0을 유지하는 용액 형태로 시판되며, 이때 매우 높은 수용성을 보인다. 따라서, 마취의 괴한 작용의 발현을 기대할 수 있다. 이러한 flumazenil의 우수한 약리효과는 개발 후 2년 동안 발표된 2500여편의 연
구를 통해 알 수 있다. 그러나, 이들 연구의 대부분은 정맥투여 또는 정구투여에 제한되어 이루어져 왔다. 그러나, Flumazenil의 특성을 고려할 때, 기존의 투여경로로 이용되는 정맥투여 및 정구투여에의 다양한 투여경로가 가능하다고 사료된다. 따라서, 본 연구의 목적은 flumazenil의 정맥투여와 비강내 투여가 나타나는 성정후 및 행동양상을 비교하여 flumazenil을 비강내 투여하였을 때, midazolam에 대한 간호 효과가 영향을 미치는 것이다.

II. 연구대상 및 방법

1. 연구대상

조선대학교 치과대학에 재학중인 22~24세(평균연령 22.2세)의 학생들 중 일부가 연구에 참여하였다는데, 미국소아과학회 전신상태평가 기준에 따라 1등급으로 판정된 건강한 15명을 대상으로 하였다(Table 1).

2. 연구방법

모든 대상자는 실험 1일전 pulse oxymeter(Nellcor symphony N-3000, Nellcor Puritan CO., Chicago, IL., USA), electric sphygmomanometer(Heartcare 200, National CO., Tokyo, Japan)을 이용하여 심박수(PR), 동맥혈 산소포화도(Spo2) 및 수축/이완기 혈압등 생정후를 기록하였으며, 100mm scale을 이용한 visual analogue scale(VAS)로써 주관적 평가를 실시하였다(Table 3).

실험 전 12시간 이상 금식하였고, 실험은 매일 동일한 시간에 실시하였다. 모든 대상자는 의료위로 3회에 걸쳐 실험하였으며, 전복부 주요영역을 통해 정맥투여 횟수를 확보한 다음, midazolam 0.2mg/Kg을 비강내 분주한 후 5, 10, 15, 20, 30, 45, 60, 90, 120분마다 생정후를 관찰하였고, 10, 20, 30, 40, 50, 60, 90, 120, 180, 240, 300분마다 주관적 평가를 실시하였다. 대조군은 midazolam 투여 40분 후 기존의 환자를 통해 정맥투여하기 위하여 투여하였다. 정맥투여는 실험실 내 유리기갑에서 사용하였으며, 비강내 투여는 소상여 성인용 아스킬을 이용하여 자제 제조한 외안을 사용하였다. Group 1은 대조군과 동일하게 midazolam을 비강내 분주하고, 40분 후 기존의 환자로 확보한 정맥투여를 통해 flumazenil 0.2mg를 투여하였으며, 비강내 투여는 실험실 내 유리기갑에서 자제 제조한 외안을 사용하였다. Group 2는 midazolam 0.2mg/Kg 비강내 분주 40분 후, 정맥투여를 통해 외안을 사용하여 투여하였으며, flumazenil 0.2mg를 비강내 분주하였다. 모든 대상자는 미국소아과학회 및 미국소아과학회에서 기준한 의식수준 및 생정후가 최복된 후 귀가시켰으며, 24, 36, 72시간 후 전후 결과를 통해 손후 병발증 및 재반 의식상태를 평가하였다.

생정후의 기록은 실험 1일간 기록자 및 당일 실험직적 기록한 baseline data로 부터의 변화를 파악하기 위해 Wilcoxon의 matched signed ranks test를 통해 분석하였으며, VAS을 이용한 주관적 평가(Table 3) 역시 동일한 방법으로 분석하여 각 군간의 상관관계를 구하여 flumazenil을 비강내 분주하였을 때 midazolam에 대한 간호효과가 있는지 여부를 판단하였다.

Table 1. Subject’s gender, age and body weight

<table>
<thead>
<tr>
<th></th>
<th>Male (n=10)</th>
<th>Female (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age</td>
<td>22.3±0.4yr</td>
<td>21.9±0.6yr</td>
</tr>
<tr>
<td>Mean body weight</td>
<td>71.2±5.2Kg</td>
<td>54.3±2.1Kg</td>
</tr>
</tbody>
</table>

Table 2. Grouping for experiment, devided into midazolam I.N. only, midazolam I.N. & flumazenil I.V., and midazolam I.N. & flumazenil I.N.

<table>
<thead>
<tr>
<th></th>
<th>0 min.</th>
<th>40 min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midazolam only</td>
<td>Midazolam 0.2mg/Kg IN</td>
<td>Placebo</td>
</tr>
<tr>
<td>Midazolam & flumazenil I.V.</td>
<td>Midazolam 0.2mg/Kg IN</td>
<td>Flumazenil 0.2mg IV</td>
</tr>
<tr>
<td>Midazolam & flumazenil I.N.</td>
<td>Midazolam 0.2mg/Kg IN</td>
<td>Flumazenil 0.2mg IN</td>
</tr>
</tbody>
</table>

Table 3. Subjective measurements using visual analogue scale(VAS) for evaluating subject’s behavior

<table>
<thead>
<tr>
<th></th>
<th>tranquilized</th>
<th>awake</th>
<th>tired</th>
<th>sad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tranquilization</td>
<td>relaxed</td>
<td>asleep</td>
<td>energetic</td>
<td>happy</td>
</tr>
</tbody>
</table>
Table 4. Onset/reduction time of midazolam I.N. only, midazolam I.N. & flumazenil I.V., and midazolam I.N. & flumazenil I.N.

<table>
<thead>
<tr>
<th></th>
<th>Onset time (min.)</th>
<th>Reduction time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midazolam only</td>
<td>7.6±2.1</td>
<td>87.5±12.4</td>
</tr>
<tr>
<td>Midazolam&flumazenil I.V.</td>
<td>7.9±3.1</td>
<td>63.5±15.1</td>
</tr>
<tr>
<td>Midazolam&flumazenil I.N.</td>
<td>7.5±2.5</td>
<td>75.5±9.5</td>
</tr>
</tbody>
</table>

Table 5. Change of subjective measurement in midazolam only

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>180</th>
<th>240</th>
<th>300min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tranquilization*</td>
<td>34±2.5</td>
<td>52±3.1</td>
<td>69±2.8</td>
<td>82±4.5</td>
<td>80±1.9</td>
<td>67±8.4</td>
<td>67±4.2</td>
<td>63±2.6</td>
<td>62±5.4</td>
<td>65±2.8</td>
<td>58±5.4</td>
<td>56±6.4</td>
</tr>
<tr>
<td>Sleep</td>
<td>20±3.2</td>
<td>53±2.3</td>
<td>66±5.1</td>
<td>82±2.0</td>
<td>81±3.0</td>
<td>60±2.4</td>
<td>55±2.6</td>
<td>43±2.3</td>
<td>38±1.0</td>
<td>28±5.7</td>
<td>30±6.4</td>
<td>25±2.6</td>
</tr>
<tr>
<td>Fatigue</td>
<td>36±2.1</td>
<td>30±3.1</td>
<td>21±4.3</td>
<td>37±3.1</td>
<td>29±4.2</td>
<td>26±3.4</td>
<td>26±5.6</td>
<td>27±5.1</td>
<td>42±4.5</td>
<td>38±6.4</td>
<td>34±5.4</td>
<td>39±5.4</td>
</tr>
<tr>
<td>Attitude</td>
<td>48±3.4</td>
<td>45±2.5</td>
<td>39±2.5</td>
<td>45±5.6</td>
<td>26±5.6</td>
<td>51±5.1</td>
<td>45±2.5</td>
<td>41±3.6</td>
<td>50±2.3</td>
<td>50±3.2</td>
<td>51±2.5</td>
<td>48±6.4</td>
</tr>
</tbody>
</table>

*: statistically significant, p<0.05

Table 6. Change of subjective measurement in midazolam & flumazenil I.V.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>180</th>
<th>240</th>
<th>300min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tranquilization*</td>
<td>38±3.6</td>
<td>56±2.6</td>
<td>63±5.1</td>
<td>73±5.2</td>
<td>69±4.5</td>
<td>60±5.2</td>
<td>48±3.0</td>
<td>38±2.1</td>
<td>35±1.8</td>
<td>35±2.3</td>
<td>30±4.0</td>
<td>32±2.5</td>
</tr>
<tr>
<td>Sleep</td>
<td>18±6.5</td>
<td>54±3.2</td>
<td>48±3.4</td>
<td>66±2.3</td>
<td>72±4.6</td>
<td>48±5.1</td>
<td>29±1.0</td>
<td>17±3.1</td>
<td>16±5.4</td>
<td>24±2.1</td>
<td>21±5.1</td>
<td>19±6.3</td>
</tr>
<tr>
<td>Fatigue</td>
<td>38±2.5</td>
<td>33±5.5</td>
<td>29±2.6</td>
<td>37±3.1</td>
<td>33±5.3</td>
<td>46±2.0</td>
<td>43±6.1</td>
<td>35±2.7</td>
<td>33±6.1</td>
<td>25±1.5</td>
<td>31±2.6</td>
<td>26±4.1</td>
</tr>
<tr>
<td>Attitude</td>
<td>43±4.6</td>
<td>42±3.4</td>
<td>37±0.8</td>
<td>44±2.0</td>
<td>39±2.6</td>
<td>38±4.3</td>
<td>38±5.2</td>
<td>39±5.1</td>
<td>36±2.5</td>
<td>40±5.2</td>
<td>41±3.5</td>
<td>40±5.3</td>
</tr>
</tbody>
</table>

*: statistically significant, p<0.05

Table 7. Change of subjective measurement in midazolam & flumazenil I.N.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>180</th>
<th>240</th>
<th>300min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tranquilization*</td>
<td>43±2.3</td>
<td>62±2.6</td>
<td>55±5.0</td>
<td>72±2.6</td>
<td>58±3.5</td>
<td>61±5.1</td>
<td>65±1.8</td>
<td>63±2.6</td>
<td>63±3.5</td>
<td>63±2.6</td>
<td>63±5.3</td>
<td>63±2.3</td>
</tr>
<tr>
<td>Sleep</td>
<td>43±6.5</td>
<td>57±3.0</td>
<td>65±2.1</td>
<td>74±3.5</td>
<td>33±3.4</td>
<td>51±2.5</td>
<td>61±3.5</td>
<td>56±6.2</td>
<td>40±3.4</td>
<td>38±3.2</td>
<td>43±5.1</td>
<td>42±6.5</td>
</tr>
<tr>
<td>Fatigue</td>
<td>32±2.1</td>
<td>43±2.4</td>
<td>43±6.3</td>
<td>39±3.4</td>
<td>58±3.8</td>
<td>49±3.6</td>
<td>39±5.1</td>
<td>38±3.5</td>
<td>50±2.1</td>
<td>36±3.5</td>
<td>35±5.6</td>
<td>31±4.1</td>
</tr>
<tr>
<td>Attitude</td>
<td>47±4.0</td>
<td>53±1.9</td>
<td>50±2.9</td>
<td>49±5.2</td>
<td>60±2.5</td>
<td>58±2.8</td>
<td>50±2.6</td>
<td>46±2.1</td>
<td>48±5.6</td>
<td>51±3.7</td>
<td>58±2.3</td>
<td>49±2.0</td>
</tr>
</tbody>
</table>

*: statistically significant, p<0.05

Fig. 1. Change of pulse rate. This means subject's psychologic state. The line 'O' is the baseline data gained directly before midazolam administration. When subjects were excited, expressed higher than 'O', and were sedated, expressed lower than 'O'. ▼ Closed arrow head indicates the point of flumazenil administration.

Fig. 2. Change of SpO2. means subject's cardiovascular function, but all of subjects were healthy. So their SpO2 was between 100%~95%. The data was negotiated like Fig. 3. ▼ Closed arrow head indicates the point of flumazenil administration.

II. 연구성적

1. Midazolam과 flumazenil 투여시 생정후의 변화

Midazolam을 비강내 본무한 대조군에서 비교적 정확한 진정효과가 나타났고, 생정후는 안정되어 있었으며, 수면이 연장되는 현상이 관찰되었으나, 속자 임의적 휴복은 불가능하였다.
flumazenil을 0.2mg 정맥주사를 실시한 group 1에서도 역시 생장후가 안정되어 있었으며, 대조군에 비해서 보다 빠른 회복되었다. 그러나, group 2에서는 본무 직후 SpO2는 안정된 상태에서 pulse rate가 급격히 변화하며 회복되었다가, 곧 다시 진정상태가 나타났다 (Fig 1, 2, 3, 4).

2. Midazolam과 flumazenil 투여시 행동양상의 주관적 평가

Midazolam 비강내 분무를 시행한 대조군에서 진정상태의 기시는 7.6±2.1분이었고, 진정상태로부터의 회복은 87.5±12.4분에 나타났다(p=0.05). 특히, 주관적 평가에 tranquilization과 sleep 항목에서의 정상화 및 회복에 따른 명확한 변화가 관찰되었지만, fatique와 attitude 항목에서의 변화는 tranquilization과 sleep 항목에서의 변화와는 일치하지 않았다. Midazolam 비강내 분무 이후 flumazenil 정맥주사를 시행한 group 1에서 관찰된 진정상태의 기시는 7.9±3.1분으로 control group과 유사한 결과를 보였으나, 진정상태에서의 회복은 63.5±15.1분이었다(p=0.05).

Fig. 3. Change of systolic blood pressure, means subject’s cardiovascular function and emotional state. The data was negociated like Fig. 3. ▼ Closed arrow head indicates the point of flumazenil administration

Fig. 4. Change of diastolic blood pressure, means subject’s cardiovascular function only. The data was negociated like Fig. 3. ▼ Closed arrow head indicates the point of flumazenil administration

Fig. 5. Subjective measurement of sleep using visual analogue scale(VAS). After flumazenil administration, indication of VAS for sleep of midazolam & flumazenil i.n. had been lower than the group of midazolam only, even then lower than the group of midazolam & flumazenil i.v. during last after flumazenil intranasal spray. ▼ Closed arrow head indicates the point of flumazenil administration ▲ Open arrow head indicates the point of flumazenil administration

Fig. 6. Subjective measurement of tranquillization using VAS. After flumazenil administration, they seemed likely Fig. 7., but it seems more blunt than Fig. 7. ▼ Closed arrow head indicates the point of flumazenil administration ▲ Open arrow head indicates the point of midazolam administration

162
Fig. 7. Subjective measurement of fatigue using VAS. This figure has no significance, because of subject’s extremely individualized particularity.
▼ Closed arrow head indicates the point of flumazenil administration
▼ Open arrow head indicates the point of midazolam administration

Flumazenil 정맥내 투여후 22.5±21.8분이 경과하여 회복하였으며, 300분 경과 시까지 rebound effect의 발현은 관찰할 수 없었다. Midazolam 투여 이후 flumazenil의 비강내 분무를 이용한 group 2에서 관찰된 전정상태의 기시는 7.5±2.5분으 로 앞서의 두 군과 유사한 결과를 보였으며, 전정상태에서의 회 복은 42.2±3.0분으로 flumazenil 비강내 분무이후 즉시 발현 되었지만, 51.9±19.5분 경과시 모든 자원간에서 group 1보다 깊은 전정상태가 관찰되었다. 그러나, 75.5±9.5분 경과후 전 정상태에서 완전히 회복되었고, 이후 300분 경과 시까지 rebound effect는 발생하지 않았다 (Fig. 5, 6, 7, 8, Table 5, 6, 7).

IV. 총괄 및 고안

최근 소아과학에 내린한 어린이의 평균연령이 늘어지고, 어 름 가지 장애를 동반한 전신질환으로 인해 어린이를 이용한 행동 조절이 관리된 경우가 증가하고 있다. 따라서, 약물들을 이용한 의식전조하거나 치료효과를 실시하는 경우가 많으며, 이때 이용되 는 약물과 술식은 많은 발전을 거듭하였다39, 아울러, 보다 안 전하고, 정확한 의식전조하거나 치료효과를 위해 benzodiazepine 용을 이용한 의식전조 및 flumazenil을 이용한 회복에 대한 연구 가 이루어지고 있다39.

Midazolam을 이용한 의식전조 후, 회복을 위해 비강내 분무 된 flumazenil은 다른 benzodiazepine ligands와 유사한 경로 를 거쳐 혈주에 도달하고 작용한다7. Flumazenil은 비강내 접촉의 낮 은 면적에 인식하게 혈주를 통한 ciliaform plate의 얇은 골조직 을 통해 신속하게 이동하여, 중추신경계에 도달한다12,13. Flumazenil은 모든 benzodiazepine agonist의 행동양상, 신경 및 전기생리학적 효과를 차단할 수 있으나, GABA 수용체에 서의 작용은 이와는 달리 나타난다. 1996년 Byrnes 등39의 염 구에 따르면, GABAα agonist인 benzodiazepine과 GABAα agonist인 baclofen 중 flumazenil의 GABA에 대한 선택적 인 결합효과가 관찰되었으며, baclofen에는 전혀 작용하지 않는 것 을 관찰할 수 있었다. 아울러, Benzodiazepine 수용체와 GABAα 수용체는 분리되어 존재하되, 밀접하게 연관되어 있으며, neuronal membrane 주변의 ionophore(common ion channel) 주변에 위치하며, 1984년 Möhler와 Richards39은 이러한 형태를 "GABA receptor-chloride channel complex" 로 명명하였다.

앞서 상정한 바와 같은 flumazenil의 benzodiazepine agonist에 대한 선택적 결합효과를 갖고 있으며, 아울러 각자의 혈 장반감기에 기반한 rebound effect를 보인다. 본 연구에서 각 군의 pulse rate를 비교한 결과 group 1, 2는 대조군에 비해 빠른 회복의 양상을 보였지만, group 2에서는 flumazenil의 비 강내 분무 시시 회복은 양상을 보였으나, 그 group 1보다 깊은 의식전조의 양상을 보였다. 이는 정맥내 투여에 비해 빠른 혈주 및 대사를 보이는 비강내 분무의 결과이다. 또한 hepatic metabolism를 통해 나타나는 hepatic extraction ratios는 0.6(midazolam 0.3)이고, T1 (therapeutic index) 역시 321.5로서 midazolam 207.5, thiopentine sodium 10.7. 그리고 propofol 10.0 등과 비교하여 큰 차이를 보였으며(Table 8, 9). Flumazenil은 0.5~2mg 정도의 미량 정맥투여로도 benzodiazepine 간호에도 안전한 부작용을 차 단할 수 있으며39, flumazenil 5mg 또는 그 이상의 과량 정맥투여 시 역시 anticonvulsant effect이외의 독성인 intrinsic pharmacologic effect는 나타나지 않는다고 보고된 바 있 다5,39.
Table 8. Dose dependent interaction between MDZ/FLU

<table>
<thead>
<tr>
<th>Midazolam Low Dose</th>
<th>Anxiolysis</th>
<th>Anticonvulsion</th>
<th>Slight sedation</th>
<th>Reduced attention</th>
<th>Amnesia</th>
<th>Intense sedation</th>
<th>Muscle relaxation</th>
<th>Hypnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midazolam High Dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* High midazolam does induce hypnosis but already very low flumazenil dose reduce hypnotic to sedation

Table 9. Pharmacokinetic properties of MDZ/FLU

<table>
<thead>
<tr>
<th></th>
<th>Midazolam</th>
<th>Flumazenil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution half-life (t½)</td>
<td>25-30min</td>
<td>≤5min</td>
</tr>
<tr>
<td>Elimination half-life (t½)</td>
<td>1.5-3h</td>
<td>0.7-1.3h</td>
</tr>
<tr>
<td>Volume of distribution (Vss)</td>
<td>0.7 L/kg</td>
<td>0.95 L/kg</td>
</tr>
<tr>
<td>Total clearance (Cl)</td>
<td>0.35-0.51L/min</td>
<td>0.5-1.31L/min</td>
</tr>
<tr>
<td>Bil/Plasma concentration coeff.</td>
<td>0.53</td>
<td>0.88</td>
</tr>
<tr>
<td>Hepatic extraction ratio</td>
<td>0.3-0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Protein binding</td>
<td>96%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Table 10. Therapeutic index of BZD and others

<table>
<thead>
<tr>
<th>Drug</th>
<th>MT (mg/Kg for rodents)</th>
<th>CD (≥mg/Kg for man)</th>
<th>Th I (Therapeutic index for Man)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midazolam malate</td>
<td>53.5</td>
<td>0.2</td>
<td>207.5</td>
</tr>
<tr>
<td>Flumazenil</td>
<td>64.25</td>
<td>0.02</td>
<td>3212.5</td>
</tr>
<tr>
<td>Thiopentone sodium</td>
<td>37.5</td>
<td>3.5</td>
<td>10.7</td>
</tr>
<tr>
<td>Propofol</td>
<td>25</td>
<td>2.5</td>
<td>10.0</td>
</tr>
</tbody>
</table>

* Therapeutic index(Th I = MT/CD) calculated from the highest nonlethal(maximum tolerated, MT) i.v. dose in rodents and the clinical dose(CD) in man.

다양한 경로로 이용한 투여가 가능한 Benzodiazipine은 pH를 적절히 조절하면 용체도가 높은 용액의 제조가 가능하다. 이들은 산성 수소이온농도 하에서는 대단히 높은 수용성을 보이며 이를 이용한 다양한 경로의 투여가 가능하다. 최근, 약물의 비강내 투여에 대한 많은 보고가 있었으며27-30, 본 연구에서는 기존의 비강내 투여법으로 많이 이용되어왔던 비강내 점착의 단단한 비농, 정밀도 통증, 과도한 posterior dripping 등을 개선한 비강내 분무 투여법을 이용하여, 이를 위해 비강내 분무기를 표준화하여 사용하였다. 비강내 분무기를 각 분무기의 분무시 1회 분무시 0.1±0.01ml를 분무할 수 있도록 개량하였으며(p<0.01), 용기는 항상 용액에 가득한 상태로 분무하도록 하였다. 특히, pH 4.0 상태의 산성용액의 flumazenil의 비강내 분무는 정맥투여에 비해 보다 빠른 약효의 발현을 보였으며, 약물제제의 흡수 및 분포, 그리고 대사반감기의 차이로 인한 rebound effect에 의해 다시 진정상태를 보였다. 그러나, 보다 정확한 연구를 위해서는 진정상태를 평가하는 적합적인 방법으로 혈청학적 분석 및 방사선동위원소 등을 이용한 약물흡수의 연구 등이 필요한 것으로 사료된다29,31.

본 연구에서 이용한 VAS를 이용한 행동양상의 평가 방법이 외에 약물의 이용한 의식정상 진정효과를 평가하기 위한 많은 방법들이 보고된 바 있다29. 그러나, 본 연구에서는 정맥에 확보 및 실험에 긴 시간이 소요되는 등의 제한으로 성인들 대상으로 실시하게 된 바, 실험대상 스스로의 주관적인 평가를 수치화 할 수 있으며 비교적 이의 학습과 처리가 용이한 VAS를 이용한 주관적 평가법을 이용하였다.

본 연구를 통해 flumazenil을 투여하지 않은 대조군의 VAS
을 이용한 주관적 행동양상평가 및 미국소아과학회기준 / 미국사상학회기준을 고려한 결과, group 1의 경우 대조군보다 감소된 흡수가 관찰되었으며, 300분 전반 결과 rebound effect는 발견되지 않았다. 그러나, group 2의 경우 flumazenil의 비강내 복용 즉시 개신한 의식상태 및 진정상태가 관찰되었으나, 곧 약물의 흡수와 분포의 차이에 의해 group 1보다 더 진정된 행동양상 및 생명호를 보였고, 그러나, 전체 회복시간은 대조군보다 감소되었다. 앞선 연구 결과로 midazolam을 이용한 의식진정시, 이의 흡수를 위해 flumazenil 정맥투여, 경구투여 및 경화내투여의 경우 비교한다 비강내 혈액의 경우 경구투여 및 경화내투여 보다 작게 작용하고 명확한 변화가 관찰되었으나, group 1 보다 연장된 회복시간을 보였다. 이는 flumazenil의 약물동역학적 특성, 특히 비강내 복용 시 제작되는 CNS로의 직접 흡수에 따른 빠른 흡수와 분포에 따른 차이로 여겨진다. 아울러 본 연구에서 다뤄진 생검 Ki의 관찰을 통해 midazolam 0.2mg/Kg 비강내 복용을 이용한 의식진정시 큰 생명호 변화가 나타나지 않지만 연장된 의식진정의 경과가 보였다. 그러나, 본 연구에서 이용된 flumazenil의 용량은 많은 연구에서 이용된 정맥투여 용량에 비해 소량을 이용하였으며, 반면에 agonist로 이용된 midazolam 비강내 분포효과는 비강내 정맥에 대한 여러 연구의 혈액분석학 연구의 결과와 몇 배 정맥투여 1/3 이상의 효과를 보인다고 한다. 따라서, flumazenil의 Th1 및 ceiling effect를 고려한 보다 많은 용량의 flumazenil 비강내 분포를 통해 연장된 깊은호흡정의 평가를 위해 dose-responses study의 필요성을 알 수 있었다. 또한, 의식진정시 이용되는 약물의 평가시 이용되는 objective behavior assessment, subjective evaluation 및 pharmacologic study 등 장기 적응도이며 개인차를 배제할 수 있는 약물동역학적 연구의 소아적환이 가능한 연구가 요구되어야 사료된다. 이러한 약물동역학적 연구 중 특히 benzodiazepine에 많이 이용되는 chromatographic study, 특히, 다양한 metabolete에 대한 정밀한 분석이 가능한 HPLC (high performance liquid chromatography)를 이용한 분석 연구들은 발표된 바 있었으며, 또한 본 research 방법으로 동위원소를 tracer로 이용한 연구가 있었기에 새로운 연구방법을 이용한 접근이 가능하다 사료된다.

V. 결론

Midazolam을 이용한 의식진정시 flumazenil을 이용한 결과를 비교하여 본研究所 이용한 실험 대상으로는 pulse-oxymeter(Nellcor symphony N-3000, Nellcor Puritan CO, USA)와 electric sphygmomanometer(Heartcare, National CO. Japan)를 이용한 생정후 관찰 및 VAS(visual analogue scale)을 이용한 tranquillization, sleep, fatigue 및 attitude를 flumazenil 경구투여, 비강내 분포 및 위약군과 비교, 평가한 결과 다음과 같은 결과를 얻었다.

1. Midazolam을 이용한 의식진정 후, flumazenil 0.2mg을 경구투여 및 비강내 분포한 결과 비강내 투여군에서 정맥내 투여군에 비해 매우 빨른 회복을 보였으나 시간이 지남에 따라 정맥내 투여군 보다 더 긴 진정상태에 지배되었다.

2. Flumazenil의 비강내 분포 및 정맥 투여 모두의 경우에 혈

병증 및 생정후 약화는 관찰되지 않았다.

이들 종합하여 본 실험이 flumazenil을 이용한 의식진정시 flumazenil 비강내 복용을 이용한 회복을 통해 안전하고 효과적인 치료요법이 가능하다 사료된다. 앞으로 flumazenil의 효과적인 용량을 결정하고, 적절한 투여방법을 찾기 위한 보다 객관적인 연구를 위한 flumazenil/midazolam의 혈액내 농도를 측정하는 연구가 필요할 것이다 사료된다.

참고문헌

Abstract

A COMPARATIVE STUDY ON THE VITAL SIGN AND BEHAVIOR APPEARANCE DEPENDING ON THE ROUTE OF FLUMAZENIL ADMINISTRATION IN CONSCIOUS SEDATION BY MIDAZOLAM

Hyun-Sik Kim, Chang-Seop Lee, Sang-Ho Lee

Department of Pediatric Dentistry, Oral Biology Research Institute, College of Dentistry, Chosun University

The purpose of this study was to evaluate the efficacy and safety depending on the route of flumazenil, as an antagonist against midazolam. The subjects of this study were 15 volunteers of 22~24 years old. They were sedated with midazolam 0.2mg/Kg intranasal spray, and then 40 minutes after midazolam administration, they were given flumazenil 0.2mg intranasal spray for their reversal.

For evaluation of the efficacy and safety of intranasal spray for flumazenil, they were monitored with pulse-oxymeter (Nelcor symphony N-3000, Nelcor Puritan CO. USA) and electric sphygmomanometer (Heartcare 200, National CO. Japan), and were assessed themselves using visual analogue scale (VAS) for tranquilization, sleep, fatigue and attitude. All of these subjects were reduced completely without any undesired situations.

The results from this study can be summarized as follows:

1. Nasally administered flumazenil using spray device produced much more rapid reduction than intravenously administered flumazenil, but soon after fell in more deep sedated state than intravenously administered flumazenil.

2. There were no considerable side effects or bad influence on vital signs of both nasally administered flumazenil and intravenously administered flumazenil.

These results suggested that the flumazenil administered nasally using spray device for reversal, we could treat patients safely and effectively under conscious sedation using midazolam administration. But, we will have to research about its optimal dosages for flumazenil, used as intranasal spray for reversal agents against the midazolam by evaluating the blood plasma concentration of midazolam and flumazenil.

Key words: Midazolam, Flumazenil, Intranasal spray