구개의 크기 및 용적에 관한 연구

백병주 · 김미라 · 김재곤 · 양연미
전북대학교 치과대학 소아치과학교실 및 구강생태과학연구소

국문초록

본 연구는 한국인의 유치열기 아동, 영구치열기의 구개의 폭, 깊이, 구개의 용적, 구개 용적과 구개면적의 상관관계 등을 조사하여 남녀간의 차이, 유치열과 영구치열과의 변화 정도를 파악하고 다양한 구개의 연구를 할 수 있는 기초자료로 참고자 하였다.

연구대상으로 정상교합의 유치열기 아동(Hellman dental age II.A) 100명(남자 50명, 여자 50명)과 영구치열기의 성인(Hellman dental age IV.A) 86명(남자 43명, 여자 43명), 총 186명을 대상으로 하여 체적의 상호의 석고모형을 이용하였다.

3차원 laser scanner(DS4060, LDI, U.S.A.), cloud data를 이용하여, polygonization, section curve와 loft surface, 표준평면, 수직평면 등을 얻은 후에 구개용적, 구개의 폭, 구개의 깊이 등을 측정하였다(Surfer 10.0, Imageware, U.S.A.).

상수의 결정을 위해 유치열, 영구치열을 남녀별로 구분하여 결과를 구하였으며 남녀간의 차이는 student t-test를 이용하여 검정하여 다음과 같은 결론을 얻었다.

1. 표준평면과 각 차이, 차이 및 구개사이의 측정점간의 거리는 영구치열에서 더 빨랐다.
2. 영구치열에서의 구개용적이 유치열에서 보다 3배이상 컸으며 특히 영구치열에서는 여자에 비해 남자에서 유의성이 크게 증가되었다(p<0.05).
3. 구개폭은 유치열과 영구치열에서 남자에서 유의성이 크게 나타났지만 구개길이는 영구치열에서만 유의성이 졌다(p<0.05).
4. 유치열과 영구치열, 남자와 여자 모두에서 구개폭과 구개길이가 이루는 면적이 구개용적과 가장 큰 상관관계를 보여주었다(r=0.401, r=0.450, r=0.678, r=0.654).

주요 : 구개용적, 구개폭, 구개길이

I. 서 론

유치열의 각부위에서 보여지는 성장발육의 형태는 영구치열 형상에 다양하게 관여하게 되며 후속되는 영구치열의 다양한 정보를 제공한다. 발육하는 치열을 취급하는 소아진료에서는 예측하는 정보를 보다 많이 확보할 필요가 있다. 유치열기의 구개 형태도 각종의 교합양식에 있어 그 차이를 판별할 수 있고 구개형태의 차이는 임상적으로 중요한 의미를 가지고 있다고 생각된다.

구개의 표준적인 상태를 파악하는 것은 양인이나 성장발육의 전반에서부터 소아치과 영역에서 접할 수 있는 구개변화형태의 경우 20이나 다운 종후군의 첫째성 기형증후군과 뇌성마비 20, 정신 지체 등의 구개이상을 감별하는데도 유용하게 이용될 수 있으며 발음 파악에서 구개가 어떻게 변화하고 있는가 하는 것을 파악하는 것도 소아치과학자나 치과교정학 또는 범죄의학 등의 분야에서 매우 중요하기 때문에 지금까지 계속 연구가 진행되어 왔다. 구개는 발음, 저작 등의 기능에 중요한 역할을 하며 특히 혈 운동을 수반하는 구개의 기능은 구개의 형태나 용적에 많은 영향을 미친다. 최근에는 3차원적인 방법을 이용하여 구개 형태나 용적 등의 구조 연구가 이루어지고 있으며 그 중 대부분은 Moire topography를 이용하는 방법이다 21, 22, 23, 24.
구개의 용적에 관한 연구중 유치열기의 경우를 Maeda, 25 Kusachi, 26 Sakai 등 27이, 혼합치열기, 영구치열기에서는 Ohmura, 28, Hirata 등 29이 보고하였다.
이와 같이 외국의 경우에는 모든 치열에 있어서의 구개 형태 및 구개형적, 또 형태와 용도의 상관관계, 정상치열과 부정교합시의 차이, 부정교합이 해소되었을 때의 변화, 폭폭에 따른 차이, 유전학적 정상인에 관한 연구는 아직도 희박하게 진행되어 왔으나 이에 대한 국내의 연구는 미흡한 실정이다.

본 연구에서는 한국인의 유치열기 아동, 영구치열기의 성인을 대상으로 하여 상악 적도 모형을 채득하고 레이저 센서를 이용한 Moire 간섭법의 원리로 하여 laser scanner를 통한 적도 모형의 측정으로 구개의 폭, 길이, 구개의 육직, 구개용적과 구개면적의 상관관계 등을 조사하여 남녀간의 차이, 유치열과 영구치열기의 변화 정도를 파악하여 성장발육의 평가 및 기형증의 진단을 위한 기초 자료로 삼고자 하였다.

II. 연구대상 및 방법

1. 연구대상

치열의 파열이나 손성, 형태이상이 없고 치열의 변화를 초래할 수 있는 구강병리의 출현이 함께 없는 정상인의 유치열기 아동(Heilmann dental age II A) 100명(남자 50명, 여자 50명)과 영구치열기의 성인(Heilmann dental age IV A) 86명(남자 43명, 여자 43명) 등, 총 184명을 대상으로 하여 암저네이트 인상제로 인상제를 한 후 경석고를 주입하여 제작한 상악의 적도모형을 이용하였고 각각의 평균 연령은 Table 1에 표시하였다.

<table>
<thead>
<tr>
<th>Table 1. Number of sample and average age(year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>I A</td>
</tr>
<tr>
<td>IV A</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

2. 연구방법

순차적으로 Cloud data, Polygonization, Section Curve, Loft surface, 표준평면, 수직평면 등을 얻은 후에 구개형적, 구개의 폭, 구개의 길이 등을 측정하였습니다.

2-1) 구개의 cloud data와 polygonization

구개의 cloud data를 얻기 위해서 3차원 laser scanner(3D Scanner, D84060, LDI, U.S.A.)를 이용하여 구개 적도모형을 측정(scanning)하였다(Fig. 1).

Scanning된 cloud data는 곡면생성 software인 Surfer10.0(Imageware(U.S.A))에서 작업을 수행하였으며 오차범위를 20~30mm로 설정하였다. Cloud data를 curve 생성을 위한 section을 구하기 위해서 polygonization 하였다(Fig. 2).

2-2) 국면 생성을 위한 section curve와 loft surface 형성

Curve 생성을 위해서 polygonized된 상태에서 cross section을 얻었다. 얻어진 section cloud에 tolerance 0.1mm를 주어 3차원적으로 curve fitting 하였다(Fig. 3).

생성된 curve를 이용하여 loft surface를 생성하였다(Fig. 4). Curve와 surface간의 오차는 0.01mm 이하이다.

Volume 산출을 위한 경계면을 생성하기 위해서 차이, 치아, 구개 사이의 경계면에서 cloud를 추출하였다(Fig. 5).

2-3) 표준평면 형성과 cloud 간의 오차 측정 및 수직평면 형성

추출된 cloud를 가지고 최소오차를 가지는 least square에 의하여 평균치의 평면을 생성하였다(Fig. 6).

생성된 평면과 cloud 간의 오차는 최소오차를 가지는 euclidian distance이다. Fig. 7에서 표시된 plot은 실제의 20배이다.

최종수 구치의 원심면을 연장한 평면이 표준 평면과 작가를 이루게 하여 수직평면을 생성한 후 구개형적을 계측하였다(Fig. 8, 9).
2-4) 구개용적, 구개의 폭과 깊이 측정
최종 trimming된 구개형태를 이용하여 구개용적을 측정하였 다(Fig. 10). 전방부 구개의 폭은 앞 전치의 치경부 최하점과 구개 연조직의 경계부 사이 (Anterior Palatal Width: APW)로 하였으며 후방부 구개의 폭은 최후방 구치의 치경
부 최하점과 구개 연조직의 경계부 사이 (Posterior Palatal Width: PPW)로 하였다(Fig. 11, 12, 13).
전방부 구개의 깊이는 중첩치 사이의 치간치로 최상점과 전
구개폭과 수직 거리(전구개장: Anterior Palatal Length: APL), 총구개 간의 중점치 사이의 최간치는 최상점과 후구개폭과 수직거리(총구개장: Total Palatal Length: TPL)를 측정하였다(Fig. 14, 15).

이상의 측정은 Imageware(U.S.A)사의 Surfer 10.0을 이용하였다.

2-5) 구개용적과 면적과의 상관관계 및 상수결정
구개면적을 전구개폭(APW) × 전구개길이(APL), 전구개폭
(APW) × 총구개길이(TPL), 후구개폭(PPW) × 전구개길이
(APL), 후구개 폭(PPW) × 총구개길이(TPL)로 구분하여 용적과의 상관관계를 조사한 후 구개용적과 각각의 면적 사이에
서 측정할 수 있는 방정식을 구한 다음 상수(constant value)를 정하였다(SPSS Ver 10.0 for windows).

II. 연구결과

형성된 표준평면과 포함하는 점들간의 오차, 구개용적, 구개의 폭, 구개의 길이, 구개의 크기와 용적과의 상관관계, 구개용적 계산을 위한 상수의 결정을 위해 유의미, 영구치열을 나이역으로 구분하여 결과를 구하였으며 나이역의 차이는 student's t-test를 이용하여 검증하였다.

1. 표준 평면의 오차

표준평면을 설정하기 위해 형성한 cloud points는 표준평면에서 최대 평균 0.64mm(유치열기 남자), 0.58mm(유치열기 여자), 1.28mm(영구치열기 남자), 0.98mm(영구치열기 여자) 거리까지 위치하였으며 평균 오차거리는 각각 0.27, 0.23, 0.39, 0.39mm로서 유의미한 경우 여자보다는 남자에서, 유치열보다는 영구치열에서 오차 범위가 크게 나타났다(p<0.001, Table 2).

유치열의 남자와 여자 사이에 유의성은 존재하지 않았다.

2. 구개용적

구개용적은 3648.20mm³(유치열 남자), 3627.60mm³(유치열 여자), 13938.00mm³(영구치열 남자), 12576.10mm³(영구치열 여자) 이었다(Table 3).

유치열 남자에서 여자보다 조금 큰 구개용적을 보여주었지만 유의성은 존재하지 않았다.

영구치열의 남자는 여자에 비하여 더 큰 구개용적을 보였다(p<0.05).

3. 구개폭

유치열 남자의 경우 전방부 구개폭은 24.50mm, 후방부 구개폭은 30.94mm이었고, 여자의 경우는 23.93mm, 29.92mm이었다. 영구치열의 경우는 남자가 27.09mm, 43.60mm이고, 여자는 26.27mm와 41.85mm로 나타났다(Table 4).

전방부 구개폭은 유의미, 영구치열 모두에서 남자가 크고 (p<0.05), 영구치열의 유의미보다 크게 나타났다(p<0.001). 후방부 구개폭에서도 유의미(p<0.01), 영구치열(p<0.05)에서 남자가 큰 수치를 보였다.

<table>
<thead>
<tr>
<th>Table 2. Error of fit plane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>primary</td>
</tr>
<tr>
<td>dentition</td>
</tr>
<tr>
<td>permanent</td>
</tr>
<tr>
<td>dentition</td>
</tr>
</tbody>
</table>

* DR : deviation rate: * p(0.001)

<table>
<thead>
<tr>
<th>Table 3. Palatal volume of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>primary</td>
</tr>
<tr>
<td>dentition</td>
</tr>
<tr>
<td>permanent</td>
</tr>
<tr>
<td>dentition</td>
</tr>
</tbody>
</table>

* DR : deviation rate: * p(0.05)
Table 4. Palatal width of samples

<table>
<thead>
<tr>
<th></th>
<th>Anterior Palatal Width (mm)</th>
<th>Posterior Palatal Width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SD DR(%)</td>
<td>Mean SD DR(%)</td>
</tr>
<tr>
<td>primary M</td>
<td>24.50 1.35 5.52</td>
<td>39.94 1.71 5.51</td>
</tr>
<tr>
<td>dention F</td>
<td>23.93 1.26 5.25</td>
<td>29.92 1.46 4.89</td>
</tr>
<tr>
<td>permanent M</td>
<td>27.08 1.65 6.11</td>
<td>43.80 2.99 6.85</td>
</tr>
<tr>
<td>dention F</td>
<td>26.27 2.00 7.60</td>
<td>41.85 3.25 7.76</td>
</tr>
</tbody>
</table>

* DR : deviation rate * p<0.05 ** p<0.01 *** p<0.001

Table 5. Palatal length of samples

<table>
<thead>
<tr>
<th></th>
<th>Anterior Palatal Length (mm)</th>
<th>Total Palatal Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SD DR(%)</td>
<td>Mean SD DR(%)</td>
</tr>
<tr>
<td>primary M</td>
<td>7.53 0.92 12.28</td>
<td>21.98 1.47 6.69</td>
</tr>
<tr>
<td>dention F</td>
<td>7.48 0.91 12.23</td>
<td>21.78 1.40 6.43</td>
</tr>
<tr>
<td>permanent M</td>
<td>9.51 1.19 12.51</td>
<td>40.95 3.47 8.47</td>
</tr>
<tr>
<td>dention F</td>
<td>8.77 1.03 11.69</td>
<td>39.42 2.76 7.01</td>
</tr>
</tbody>
</table>

* DR : deviation rate * p<0.05 ** p<0.01 *** p<0.001

Table 6. Correlation Coefficient between palatal volume and size

<table>
<thead>
<tr>
<th></th>
<th>APW×APL</th>
<th>APW×TPL</th>
<th>PPW×APL</th>
<th>PPW×TPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary M</td>
<td>0.343</td>
<td>0.375</td>
<td>0.382</td>
<td>0.401</td>
</tr>
<tr>
<td>dention F</td>
<td>0.321</td>
<td>0.360</td>
<td>0.376</td>
<td>0.450</td>
</tr>
<tr>
<td>permanent M</td>
<td>0.236</td>
<td>0.646</td>
<td>0.276</td>
<td>0.678</td>
</tr>
<tr>
<td>dention F</td>
<td>0.232</td>
<td>0.630</td>
<td>0.308</td>
<td>0.654</td>
</tr>
</tbody>
</table>

4. 구개길이

유치열 남자의 경우 전구개 길이와 총 구개길이는 7.53, 21.98mm, 여자는 7.48, 21.78mm이었으며 영구치열에서는 각각 9.51, 40.95mm이었다(Table 5).

구개길이는 유치열에서 남아와 여아사이에 유의성이 존재하지 않았다. 그러나 영구치열에서는 전구개길이(p<0.01), 총 구개길이(p<0.05) 모두에서 남아에게서 크게 나타났다. 특히 전 구개길이는 영구치열에서 더 큰 값을 보였었다(p<0.001).

![Fig. 16. Correlation coefficients between palatal volume and PPW×TPL](image)
Table 7. Constant value between palatal volume and size

<table>
<thead>
<tr>
<th></th>
<th>APW×APL</th>
<th>APW×TPL</th>
<th>PPW×APL</th>
<th>PPW×TPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary M</td>
<td>20.06</td>
<td>6.80</td>
<td>15.86</td>
<td>5.38</td>
</tr>
<tr>
<td>dentition F</td>
<td>20.66</td>
<td>6.99</td>
<td>16.47</td>
<td>5.58</td>
</tr>
<tr>
<td>permanent M</td>
<td>54.85</td>
<td>12.55</td>
<td>34.06</td>
<td>7.80</td>
</tr>
<tr>
<td>dentition F</td>
<td>55.27</td>
<td>12.11</td>
<td>34.64</td>
<td>7.60</td>
</tr>
</tbody>
</table>

5. 구개용적과 구개면적과의 관련관계

구개용적과 구개 면적과의 관련관계를 알아보기 위하여 구개 면적은 전구개폭×전구개길이, 전구개폭×충구개길이, 후구개폭×전구개길이, 후구개폭×충구개길이의 4군으로 분류하여 구개용적의 관계를 조사하였다(Table 6).

후방부 구개폭은 충구개길이에 비례하는 면적과 구개용적이 되는 관계가 가장 큰 상관관계를 나타내었다(Fig. 16).

6. 구개 용적 계산을 위한 식

구개의 크기를 측정한 후 용적 계산을 위한 식을 알아보기 위하여 구개의 폭과 구개의 길이를 전구개폭(APL), 전구개폭(PPW)×충구개길이(TPL), 후구개폭(PPW)×전구개길이(APL), 후구개폭(APW)×충구개길이(TPL)로 구한 후 상수를 구하였다.

\[
X = \frac{V}{(APW \text{ or } PPW) \times (APL \text{ or } TPL)}
\]

로 하였으며 구해진 각각의 상수는 유치절에서 남자의 경우 20.06, 6.80, 15.86, 5.38 여자의 경우 20.66, 6.99, 16.47, 5.58였고 영구치열에서는 남자의 경우 54.85, 12.55, 34.06, 7.80이며 여자의 경우는 55.27, 12.11, 34.64, 7.60이었다(Table 7).

IV. 총괄 및 고찰

3차원 digitizing 측정기를 이용하여 형상에 대한 데이터를 획득하고 데이터의 처리와 함께 형상에 대한 완전한 곡면을 만들게 하는 기술을 역공학이라 한다. 역공학 기술은 크게 세 가지 방법으로 분류된다.

첫 번째는 측정점을 곳바로 곡면으로 변환시키는 것이다. 이 방법은 곡면이 측정점을 정확히 따라 가기 때문에 측정점이 실물과의 오차가 없고 가정하였을 경우에는 매우 정밀도가 높은 곡면이 된다. 그러나 실제 측정점들은 측정점에서 여러 가지 이유로 실제 사물과의 오차가 발생하며, 이 경우 측정점을 곳바로 곡면으로 만들었을 경우에는 실제 사물과 곡면과는 상당한 차이가 발생하고 곡면이 빼리는 현상이 발생할 수 있다. 또한 계산 시간이 오래 걸리는 단점이 있다.

두 번째 방법은 측정점을 처리하고, 측정점의 영역을 분할한 후, 작 업을 수행한 후 sweep 곡면이나 loft 곡면을 생성하는 것이다. 이 방법은 가장 안정적이고 널리 쓰이는 방법이다. 또한 단면 곡선을 생성하기 때문에 노면 작업 시 정확도 또한 비교적 높다.

세 번째 방법은 측정점을 삼각망을 형성하여 곡면을 생성하는 것이다. 이 방법은 사용이 편리하지만 정밀도가 떨어지고 계산 시간이 길다. 이 방법은 형상기하와 방법에 많이 이용되었다.

본 논문에서는 두 번째 방법을 채택하여 이용하였다. 이 방법은 측정된 형태데이터를 기리하여 단면곡선을 만들고 그 단면 곡선으로 곡면을 만드는 3차원 곡면모델링이다. 3차원 곡면모델링에는 여러 가지가 있는데 그 중에서 sweep 곡면은 2차원 단면곡선이나 profile 단순화시켜서 설계자가 원하는 상이한 복잡한 3차원 곡면 모델링을 쉽게 할 수 있다는 장점이 있다.

구개 용적을 조사한 여러 연구들들을 살펴보면 Moire의 원리를 이용한 topography법이 대부분이다. 이 방법은 대부분 상악(유치절치의 치열유두와 양 후방구치의 치열부 최하점을 연결하는 상악면함을 포함하는 면을 표준 평평으로 설정하여 연구하였다. 또한 이 표준평평과 기준으로 1mm 간격으로 설계면을 설정하여 각 점의 면적의 합을 산출하여 구개용적으로 계산하였다.

이러한 방법들은 각 단면마다 나타날 수 있는 오차가 상당히 높아 나타났다. 본 연구에서는 각 치아와 치아 사이의 치간침은을 전부 포함하는 평면을 설정하였는데 이 평면은 모든 치간침에서 가장 가까이 존재할 수 있도록 치아의 측정점과의 오차를 최소화하기 위하여 최소공식법으로 계산한 least square fitting 방법을 적용하였다.

본 연구에서 표준평통과 각 측정점 사이의 평균치는 연구 치열에서 크게 나타났다. 이것은 유치절치에서 연구치열에서 이르며 최저부위에서 발생하는 상이에 기인하여 error가 크게 발생한 것이라고 생각된다.

유치치열의 구개형태나 구개용적, 나이가 증가함에 따라 나타날 수 있는 변화에 대한 연구는 다양하게 진행되어 있다.

Maeda는 Moire 지도 등에 간격(1mm단위)을 이용한 소이의 구개용적의 연구에서 안밀의 구개용적이 평균 3.21cm³이었고 남녀간에 유의한 차이가 없었으며 구개용적과 구개면적, 구개폭, 구개고정의 상관관계는 각각 r=0.39, 0.29, 0.69로써 구개고정과의 관계가 가장 높았다고 하였다. Sakai 등은 Moire topography법을 이용한 유치치열의 구개용적 연구에서 구개용적은 나이가 증가함에 따라 증가하는 경향이 있었으나 유의한 차는 존재하지 않았으며 부정교합자와의 비교에서 반대교합자의 경우에는 구개용적이 정상교합자보다 크게, 상악전층에에는 작게 나타났다고 보고하였다. 또한 반대교합자의 치료효과에도 유용한 치아가 없었다고 기술하였다. 또한 유치치열 전치면반대 합은 치료가 진행됨에 따라 구개질방부, 치열후방부의 치근들
기부 및 구개의 최상부 부근에 변화가 보였으며 유격지의 구개
장에 변화가 있었다고 하였다.

Sakai 등(20)은 유치열의 구개 형태에 대한 연구에서 반대교합
의 경우 치열의 전후가 빠르고 구개는 가장 높았으나 상악전골
의 경우에는 정상교합과 차이가 있었고 정상교합에서는 모든
부위에서 반대교합과 상악전골의 중간 형태를 보고하였다.

또한 유치열의 구개목록은 제 1유구치지, 제 2유구치지, 후
방 치조기지부에서 나가며 증가함에 따라 차이가 있었으며 구
개prices의 경우에는 감소하는 경향이 있었지만 구개목적의 경
우 제 1유구치 전방 구개목적에서는 3세의 계측기보다 6세의
계측기의 경우를 보였는데 각 연령단에는 유의적 차이는 없었
으며 총구개목적에서는 증가적으로 증가하는 경향을 보였고
6세의 계측기에서는 3세의 것보다 큰 값을 보였으며 유의적 차
는 인정되지 않았다고 하였다. 따라서 본 연구에서는 유치열의 구
개목적을 연령단과 관계없이 일명적으로 조사하였다.

Kusachi(21)는 유치열기 구개 형태와 유력에 관한 연구에서 평
균 성장은 연령이 증가함에 따라 구개목적 구개형이 연령기부방향에서 증
가하고 구개길이는 제 2유구치 전방부에서는 감소하였으며 후방치
조 기지부에서는 증가하였고 구개목적의 경우에는 유한
직 전방 구개목적제 1유구치 구개목적을 감소하고 총구개목적
은 증가하여 유의적인 차이가 있었다고 하였다.

Takagi 등(22)은 제 3세부터 7세까지의 유치열의 변화에 대한 연
구에서 구개열이 낮아져서 크게 계측되었다고 하였다. Lebret(23)
는 구개 최심부는 대부분 변화하지 않는다고 기술하
었다.

유치열 반대교합의 개선 전후의 변화에 대해 Koikawa 등(24)
은 치하로 돌려来的 수평후면적은 chin cup과 activator나
lingual arch에 의해 치열의 경우와 증가하였고 상악 전골건
立ち의 경우에는 감소하는 경향이 있었고 하였고
Marugame 등(25)은 구개목적도 이와 마찬가지로 chin cup과
activator, lingual arch 구개목적에서는 증가하였고 상악전골의 건장
치근에서는 감소하였다고 보고하였고 Lebret(26)는 상악골 확
장기의 변화에 대하여 언급하였다.

Hirata 등(27)은 동일한 유치열 및 영구치열의 구개형태와
유력에 관한 연구에서 남녀 모두에서 유은은 영구치열에서 많
이 증가하였으며 여아가 남아보다 큰 유은을 보였고 구개의 알
손부와 중간부는 각각 동일한 높이를 보였고 변이를 사망하였다.

Ohtama(28)는 ⅠA기 및 ⅡB기의 구개목적과 구개형태의 상
관관계를 검토하여 유치열 충구가 유력은 구개 최상부구개목적의
상관성이 높고 영구치열 총구개목적은 구개최상부 고정치가 제
2소구치지 구개 구배목적의 상관성이 높았고 구개목적은 여아의
경우가 다소 높았다 기술하였다.

본 연구의 구개목적에서도 유치열의 경우 남녀의 차이가 거
의 없었고 영구치열에서는 남자에서 더 크게 측정되어 왜자는 다
른 결과를 보여주었다. 또한 구개목적 구개길이를 위주로 한 면
적을 중심으로 구개목적의 상관관계를 조사하여 후구개목적
중구개길이가 형성하는 연령이 남녀, 유치열 및 영구치열 모두
가장 큰 상관관계를 보였다.

Moss(29), Hovell and Priel(30), Scott(31)은 약간년의 변조적 관
련된 연조직의 기능에 반응한다는 기능모델러(behavioral
matrix theory)를 제창하였는데 이것은 구개의 발육도 저작력, 연
하, 회화 등의 연조직 기능에 의하여 특히 하위 형태가 기능
구개 발육에 직접 관계한다고 생각할 수 있다고 주장하였다.

구개의 성장변화에 대하여 Enlow와 Bang(32)는 차이의 범위
에 수반하여 일어나는 치조골의 free margin의 증가가 주요인
으로 되어 임, 폭, 능가가 증가하고 비강저에서는 흡수, 구개
의 구개길이는 점거가 알아맞는 상호작용으로부터 구개
는 평행하게 하면 이로 인해 구개의 발달을 따라 수축적으로
는 구개의 폭이 넓어지고 이로 이따 구개의 폭이 증가하며 수
평적으로는 치열골의 길이가 증가한다고 주장하였다.

구게목적은 유치열에서 영구치열로 이어지는 증가하는 것은
이와 같은 치조골의 펠로가 등에 따른 구개의 성장변화가 주된
원인이라고 사료된다.

Kusachi, Sakai 등(33)의 연구결과에 따르면 구개목적과
구개목적에서 거의 비슷하거나 약간 큰 경향을 알 수 있었지만
구개목적은 작게 나타났다. 그러나 표준편차와 측정결과를
설계하는 기준에 차이가 있었고 예측 방법의 상이함에 따른 요
차를 생각하면 가능한 범위로 사료되었다. 본 연구에서 이
용했던 구개목적과 구개목적의 상관관계를 구개의 능이
가계산한 임계치 상관관계를 측정할 수 있는 방법을 이용한
추가연구 또한 무질교합자의 유력적 크기에 대해 연구 등이
계속적으로 진행되어야 할 것으로 사료된다.

V. 결 론

유치열과 영구치열의 구개의 크기 및 유력은 알아보기 위해
186개(유치열 남녀 각 50, 영구치열 남녀 각 43)의 상악 쇠고
모형을 제작한 후 3D Laser Scanner를 이용하여 cloud data,
polyzontization, sectional curve와 loft surface, 표준편차와
수적평균 등을 정정하고 계측하여 다음과 같은 결과를 얻었다.
1. 표준편차와 각 차이, 차이 및 구개사이의 측정절간의 거리
 는 영구치열에서 더 긴게 나타났다.
2. 영구치열의 구개목적 유치열에서 보다 3세이상 커
 며 특히 영구치열에서는 여자에 비해 남자에서 유의성 있게
 크게 나타났다(p<0.05).
3. 구개목적은 유치열과 영구치열에서 남자에서 유의성이 커
 고 크게 나타났지만 구개길이는 영구치열에서만 남자에서 유
 의성이 커졌다(p<0.05).
4. 유치열과 영구치열, 남자와 여자 모두에서 후구개목적과 중구
 개길이가 다른 변이치가 구개목적과 가장 큰 상관관계를 보
 여주었다(r=0.401, r=0.450, r=0.678, r=0.654).
참고문헌

10. Ohmura T : A study on the forms and the volume of the palate for deciduous dental arch period (I A) and permanent dental arch period (II C) with the same person - An application of Moire topography, Nihon Univ Dent J 65:740-751, 1991.

Abstract

A STUDY ON THE SIZE AND VOLUME OF THE PALATE

Byeong-Ju Baik, D.D.S., Ph.D., Mi-ra Kim, D.D.S., M.S.D.,
Jae-Gon Kim D.D.S., Ph.D., Yun-Mi Yang, D.D.S., M.S.D.

Department of Pediatric Dentistry and Institute of Oral Bioscience,
School of Dentistry, Chonbuk National University

The purpose of this study was to clarify the palatal arch length, width and volume in the primary and permanent dentition. Samples were consisted of normal occlusion in the primary dentition (50 males and 50 females) and permanent dentition (43 males and 43 females). Their upper plaster casts were used and through 3-dimensional laser scanning (3D Scanner, DS4060, LDI, U.S.A.), cloud data, polygonization, section curve, loft surface and fit and horizontal plane were made for measuring the palatal arch length, width and volume (Surfacer 10.0, Imageware, U.S.A.). Correlation coefficients were calculated separately for males and females in each group (SPSS 10.0). The results were as follows:

1. Average distance from the fit plane to the points (tooth-tooth-palate) was greater in the permanent dentition than those of primary dentition.
2. Palatal volume was greater more than 3 times in the permanent dentition, especially it was greater in male compared to female with significance (p < 0.05).
3. Palatal width of male was greater in the primary and permanent dentition but palatal length, only in the permanent dentition than that of female (P < 0.05).
4. Correlation coefficients were statistically most significant between the palatal volume and size of posterior palatal width and total palatal length (r = 0.401, r = 0.450, r = 0.678, r = 0.654).

Key words: Palatal arch volume, Palatal arch width, Palatal arch length