A Study of Dry Etch Mechanism of the GaN using Plasma Mass Spectrometry

H. S. Kim, W. J. Lee, J. W. Jang, G.Y. Yeom
J. W. Lee* and T. I. Kim*

Dept. of Materials Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
*Photonics Lab., Samsung Advanced Institute of Technology, Suwon, 440-660, Korea

Abstract

The characteristics of inductively coupled Cl2/BCl3 plasmas during the GaN etching were studied using plasma mass spectrometry by measuring the relative amounts of reactive ions, neutrals, and etch products. GaN etch rates increased with the increase of pressure and showed a maximum near 25mTorr for the pure Cl2 and near 30mTorr for Cl2/BCl3. The addition of BCl3 to Cl2 also was increased GaN etch rates until 50%BCl3 was mixed to Cl2. The GaN etching with pure Cl2 appears to be related to the combination of Cl2+ ion bombardment and the chemical reaction of Cl radicals. In the case of the GaN etching with Cl2/BCl3, in addition to the combined effect of Cl2+ ions and Cl radicals, BCl3+ ions appear to be responsible for some of GaN etching even though they do not have significant effect on the GaN etching compared to Cl2+ and Cl. Ga+, GaCl+, GaCl2+, and N2+ were observed as the positive ions of etch products, and the intensities of these etch products showed the same trends as those of GaN etch rate. Among the etch products, Ga and N2 appear to be the main etch products.

Keywords: GaN, plasma etching, ICP, QMS, etch mechanism

1. INTRODUCTION

Currently, although the dry etching of III–V compounds has received increasing attention recently, their chemical reactions and plasma characteristics have not yet been fully investigated. Among the various III–V compound semiconductors, only some of the studies on their respective dry etch mechanisms are reported such as for InP etching and GaAs chemical etching. GaN etchings are widely applied to the fabrication of optoelectronic devices and electronic devices. Especially, mirror facet of GaN-based laser diode has been generally formed by dry etching methods. High density plasma source, ion beam etching, and advanced wet etching are used to mask mesa structures and laser facets. To etch GaN with the etch rates approaching 1000nm/min and smooth and high anisotropic etch profiles, high density plasma sources are gen-
erally used with chlorine-containing gases5–9.

Cl\textsubscript{2}/BCl\textsubscript{3} gas mixtures, used in this experiment, have been widely used in the etching of metal lines in microelectronic fabrications. Cl\textsubscript{2} is usually the primary etch gas while BCl\textsubscript{3} is added to remove the native oxide layer, to scavenge water vapor, and to enhance the anisotropic etching. These gas mixtures were also used to etch compound semiconductors such as GaAs and InP10.

The GaN etch rate close to 850nm/min was obtained using Cl\textsubscript{2}-rich gas combinations of Cl\textsubscript{2}/BCl\textsubscript{3}, previously reported7.

In this study, the effects of the addition of BCl\textsubscript{3} to Cl\textsubscript{2} and the increase of pressure on the GaN etch rate were investigated by the mass spectrometer during the GaN etching.

\section*{2. EXPERIMENT}

The GaN was etched by a home-made inductively coupled plasma (ICP) equipment using various combinations of Cl\textsubscript{2}/BCl\textsubscript{3} at the operational pressures from 5 mTorr to 40mTorr while inductive power, bias voltage, and substrate temperature were fixed at 600 watts, \(-\)120 volts, and 70°C, respectively7. The details of the ICP equipment and the GaN samples used in the experiments are described elsewhere6,7. To understand the effects of plasma conditions on the GaN etch properties, a quadrupole mass spectrometer (QMS; Hiden Analytical Inc. PSM 500) located on the sidewall chamber have was used.

The schematic diagram of ICP etcher with QMS system is shown in Fig. 1. The QMS used in the analysis of the plasmas was configured with ion optics, an energy filter, and an integral electron impact ion source.

![Schematic diagram of inductively coupled plasma etcher with QMS](image_url)

Neutral species such as radicals from the plasmas are ionized by an integrated electron impact ion source and are then detected. For the mass spectroscopic detection of radicals, it is difficult to distinguish the direct ionization of free radicals from the dissociative ionization of the parent molecule. Therefore, the appearance mass spectrometric (AMS) method11 was used to separate them because many of these processes have several eV differences in the threshold energies of their electron impact ionization. Some fundamental threshold ionization energy in Cl\textsubscript{2}/BCl\textsubscript{3} plasmas are summarized in Table 112–16. The threshold ionization energy can be also confirmed by scanning electron energy in the electron impact

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
Species & paths & \textit{E}_\text{a}(eV) \\
\hline
Cl\textsubscript{2}* & Cl\textsubscript{2} + e & 11.4–11.5 \\
\hline
Cl* & Cl + e & 13.01 \\
& Cl\textsubscript{2} = 2Cl + e & 15.5 \\
\hline
BCl\textsubscript{3}* & BCl\textsubscript{3} + e & 11.64–12.19 \\
\hline
BCl\textsubscript{2}* & BCl\textsubscript{2} + e & 9.68–10.10 \\
& BCl\textsubscript{2} = BCl + e & 12.3–12.8 \\
\hline
BCl+ & BCl + e & 13.15 \\
& BCl\textsubscript{2} = BCl + e & 15.73 \\
& BCl\textsubscript{3} = BCl + e & 18.37–20.2 \\
\hline
B+ & B + e & 8.29 \\
& BCl + e & 18.09 \\
\hline
\end{tabular}
\caption{Summary of fundamental data of threshold ionization energy reported by other works12–16.}
\end{table}
ion source with and without the plasma. For example, QMS output intensities of Cl and Cl\textsubscript{2} in the pure Cl\textsubscript{2} plasma at 600Watts of inductive power and 30mTorr of pressure as a function of electron energy are shown in Fig. 2.

Reactive ion densities in the plasmas were also measured using the QMS by turning off the filament and by the integration of the collected ions having different ion energies. At first, the ion mass was measured from 1 to 300 amu at 6eV of the ion energy. And then the intensity of each ions, detected by the previous basic mass scan, was scanned as a function of ion energy of ±200 and finally relative densities of ion species were estimated from the direct integration of the ion energy distribution. Fig. 3 shows ion energy distribution of Cl+ in pure Cl\textsubscript{2} plasma at 600Watts of inductive power and 30mTorr of pressure. Total counts estimated from integration of ion energy distribution are 665900 counts and peak energy is 9.1eV.

Etch products during the GaN etching by Cl\textsubscript{2}/BCl\textsubscript{3} plasmas were also measured using positive ion measurements. Among these, Ga-containing etch products such as Ga+, GaCl+, and GaCl\textsubscript{2}+ were also verified by additionally etching GaAs with the same etching conditions for the GaN etching. To separate the residual etch products on the chamber wall or QMS ports and intrinsic N\textsubscript{2} from the actual etch products, the QMS intensities measured during the GaN etching were subtracted by the QMS intensities measured with the plasma without GaN. These results were compared with the etch products such as GaCl\textsubscript{n}, Ga, and N\textsubscript{2} measured by OES. The detailed measurement method of OES and the measured results are described elsewhere79.

3. RESULTS AND DISCUSSION

GaN samples were etched with various Cl\textsubscript{2}/BCl\textsubscript{3} combinations at the pressure from 5 to 40mTorr while keeping the inductive power at 600Watts, the bias voltage at \sim120Volts, and the substrate
temperature at 70°C, and some of the results are shown in Fig. 3. The GaN etch rate increased with the addition of BCl₃ to Cl₂ and the maximum etch rate was obtained with the Cl₂/10% BCl₃ mixture. Also, until 50% of BCl₃ was mixed to Cl₂, the GaN etch rates were higher than that etched with pure Cl₂. The GaN etch rate also increased with pressure and showed a maximum at 30mTorr for the Cl₂/10%BCl₃ mixture. In the case of pure Cl₂, the degree of GaN etch rate increase with pressure was smaller compared to the case of Cl₂/10%BCl₃, however, the GaN etch rate showed a maximum near 25mTorr which is similar to that etched with Cl₂/10%BCl₃.

Plasma species such as neutrals and ions were measured using QMS when 2 inch diameter GaN samples were etched at 600Watts of inductive power, -120 V of bias voltage, 70°C of substrate temperature. To study the effect of BCl₃, neutrals and ions were measured as a function of Cl₂/10%BCl₃ gas mixture at 30mTorr of operational pressure and the results are shown in Fig. 5 (a) for neutrals and (b) for ions. For pure Cl₂ inductively coupled plasmas, Cl₂⁺ was the main ion species and Cl was the main neutral species. For Cl₂/BCl₃ plasmas, Cl was also main neutral species and Cl₂⁺ was the main ion species until 50% BCl₃ was mixed to Cl₂. BCl₂⁺ ions were the second main species for Cl₂/BCl₃ plasmas until 50% BCl₃ is mixed to Cl₂ and became the main species with the further increase of BCl₃ percent. The increase of pressure increased the densities of neutral species monotonically for both pure Cl₂ and Cl₂/BCl₃ gas mixtures while Cl₂⁺ slightly decreased until 20mTorr for pure Cl₂, and while Cl₂⁺ and BCl₂⁺ increased until 30mTorr for Cl₂/BCl₃ (not shown). The trends of neutral and ions during the GaN etching were similar to the trends of those without GaN even though the absolute intensities of individual species were a little different.

As shown in Fig. 4, the GaN etch rates with the addition of BCl₃ (less than 50%) are higher than those with pure Cl₂ for all of the investigated pressure range even though Cl₂⁺ appears to decrease continuously with the increase of BCl₃ and Cl are higher than that for pure Cl₂ only up to 20% BCl₃. The BCl₂⁺, which exists as the second main ion (more than 15% at Cl₂/10%BCl₃), increases with the addition of BCl₃ even though BCl₂⁺ appears not as effective as Cl₂⁺ in the GaN etching. Therefore, in the case of GaN etching with Cl₂/BCl₃, not only Cl₂⁺ and Cl but also BCl₂⁺ appears to assist in the GaN etching. Total count of positive ions decreased continuously with the increase of BCl₃ percent, therefore, rather than

![Fig. 4 GaN etch rates as a function of pressure for gas combination of Cl₂/BCl₃ plasmas at 600Watts of inductive power, -120 volts of bias voltage, and 70°C of substrate temperature.](image-url)
2-inch diameter GaN wafer were also investigated using the QMS. Fig. 6 shows ion mass spectra of Cl\textsubscript{2}/10\%BCl\textsubscript{3} plasma (a) with and (b) without GaN at 600Watts of inductive power, -120 volts of bias voltage, 70°C of substrate temperature and 30mTorr of pressure. As a positive ion etch proct, Ga+, GaCl+, GaCl\textsubscript{2+}, and N\textsubscript{2}+ were observed as shown in this figure. The densities of positive ion species were integrated from ion energy distribution and the results are shown in Fig. 7 as a function of pressure for pure Cl\textsubscript{2} and for Cl\textsubscript{2}/10\%BCl\textsubscript{3}. These etch products showed the maximum at 30mTorr similar to the case of GaN etch rate with pressure. Even though it is difficult to determine the main etch products only from positive ion products, Ga and N\textsubscript{2} appear to be the main etch products for both of the cases with pure Cl\textsubscript{2} and Cl\textsubscript{2}/10\%BCl\textsubscript{3} when compared with the data obtained with OES in the previous study7. Also, GaCl+ (x=1.2) ions appear to be formed from the ionization of GaCl\textsubscript{2}.

Fig. 5 QMS output intensities of (a) neutral species and (b) positive ion species as a function of gas combination of Cl\textsubscript{2}/BCl\textsubscript{3} plasmas during the GaN etching at the same condition in Fig. 4.

The number of total ions, specific ions such as Cl2+ and BCl\textsubscript{3+} appear to affect the GaN etch rate.

Etch products produced during the etching of
products, which is the primary fragment of GaCl$_3$ and is known to dominate the cracking pattern of GaCl$_3$ as reported by other's study3,19. On the contrary, the intensity of Ga$^+$ appears not to be fully originated from the cracking of the GaCl$_x$, but to reflect physical sputtering of atomic species. In the previous study, we investigated etch products using OES and Ga and N$_2$ were observed as the main etch products similar to the QMS data obtained in Fig. 7. One of the possible etch product such as NCl$_3$ was not detected with our QMS. Also, N possibly from GaN was detected with a very low intensity.

4. CONCLUSIONS

In this study, neutrals and ions produced by inductively coupled Cl$_2$/BCl$_3$ plasmas were investigated as a function of pressure and Cl$_2$/BCl$_3$ mixture using the QMS and their relation to GaN etch rate were estimated.

The results showed that the enhancement of GaN etch rates for Cl$_2$/BCl$_3$ plasmas could be related to the formation of Cl radicals and reactive ions such as Cl$_2^+$ and BCl$_3^+$ measured by the mass spectrometry during the GaN etching. These Cl radicals are responsible for chemisorption and BCl$_3^+$ and Cl$_2^+$ for chemical and/or physical sputtering. Ion assisted chemical desorption seems to be generally enhanced by the addition of BCl$_3$ to Cl$_2$ and also with the increase of pressure. Also, the abundance of BCl$_3^+$ in the Cl$_2$/10%BCl$_3$ plasmas appears to be important in the GaN etching compared to the pure Cl$_2$ plasma. The Ga$^+$, GaCl$_x^+$, and N$_2^+$ were observed during the GaN etching as the etch products and the intensities of these ion etch products were correlated with the trend of GaN etch rate.

References