ANTICARIOGENIC EFFECT OF FLUORIDE RELEASED FROM SEALANT COMPARED TO TOPICAL FLUORIDE APPLICATION METHODS

Kitae Park, Heung-Kyu Shon, Byung-Jai Choi
Kwang-Kyun Park, Dong-Su Shon, Jong-Gap Lee

Department of Pediatric Dentistry, College of Dentistry, Yonsei University
Department of Pediatric Dentistry, College of Dentistry, Seoul National University*

Sixty human premolar teeth were used for this in vitro study. After each tooth was sectioned mesiodistally, one half was used for the experimental group and the other half for the control.

Three groups were made for each fluoride applying method and twenty teeth were assigned to each group.

Ten teeth were used for evaluating total fluoride amount and the other ten were used for firmly-bound fluoride. Fluoroshield was used for fluoride-releasing sealant and 1.23% APF, 0.05% NaF were used for topical application fluorides.

Each tooth was cleaned with a tooth brush using nonfluoride containing pumice before the experiment.

In the sealant group, fluoroshield was applied to the enamel surface without etching procedure and stored in 37°C saline for 30 days.

After 30 days, sealant was removed with explorer without scratching the enamel surface and washed with distilled water and dried. In the APF group, each tooth was immersed in 1.23% APF for 30 min then washed and dried in the same manner. In the NaF group, each tooth was immersed in 0.05% NaF for 24 hours then washed and dried as described above. After each fluoride regimen was applied, ten teeth were randomly selected from each group and immersed in 1M KOH solution for 24 hours to remove loosely-bound
fluoride possibly deposited by the three different fluorides applied. In each group, total fluoride amount deposited and the amount of enamel removed by acid biopsy were calculated. After loosely-bound fluoride was removed, firmly-bound fluoride deposited and the amount of enamel removed by acid biopsy were also calculated.

Total fluoride amount deposition was significantly increased in the APF and NaF groups, but not in the sealant group. Amount of enamel removed by acid-biopsy was also significantly diminished in the APF and NaF groups, but not in the sealant group. After loosely-bound fluoride was removed from each groups, no statistical difference was found in the amount of firmly-bound fluoride in any groups. Also no effect of firmly-bound fluoride on enamel dissolution was shown in any groups after loosely-bound fluoride was removed from each group.

In conclusion, topical application method of APF or NaF is more effective than fluoride-releasing sealant application to make CaF₂ coating on enamel surface and CaF₂ coating is the main source for anticariogenic effect of fluoride. However, longerterm anticariogenic effect of fluoride-releasing sealant should be further evaluated.

Key words: Loosely-bound fluoride, Firmly-bound fluoride, Anticariogenic effect, CaF₂, Fluoride-releasing sealant

I. 서 론

소아치과 영역에서의 치아우식증에 관한 예방적인 치료는 크게 치면열구전색제(pit and fissure sealant)와 국소적인 불소도포 (fluoride application)의 두가지 방법으로 요약될 수 있다.

치면열구전색제는 교합면에서 잇솔질이 어려운 소아와 연구부위를 기계적으로 차단함으로써 우식을 방지하는 목적으로 사용된 반면 불소도포의 우식예방 효과는 주로 인접면등을 비롯한 평활면에서 나타난다. 이때 불소의 우식예방 효과는 일반적으로 법랑질의 용해(solubility)를 감소시키고 재결화(remineralization)를 촉진하는 동시에 치태내의 세균에 대한 활동을 억제시킴으로써 나타난다.

치아 법랑질의 구조는 수산화인화석(hydroxyapatite) 및 탄산화된 수산화인화석(carbonated hydroxyapatite)으로 구성되어 있으며 이러한 구조는 비교적 불안정하여 탈화(deemineralization)의 가능성이 높으며 불소의 존재하에서 불화된 수산화인화석(fluoridated hydroxyapatite) 또는 불화인화석(fluorapatite)으로 변형됨으로써 보다 안정적인 구조를 갖추게 된다고 한다.

현재의 치아우식증에 대한 개념은 구강 내에서의 탈화 및 재결화가이에서의 균형에 의한 것으로 받아들여지고 있으며 비가역적인 현상이 아닌 어느 한도내에서는 가역적인 현상으로 설명되고 있다. 불소의 존재 하에서는 법랑질에서의 탈화에 대한 재결화가 촉진되며 이러한 재결화의 촉진에 불소의 가장 큰 효과로 설명되고 있는데 재결화에 의해서 법랑질에서는 용해도의 감소가 나타나며 특히 탈퇴된 법랑질 부위에서 결정(Crystal)의 크기가 재결화후에 증가되어 산부식에 보다 저항성을 갖게된다. 법랑질 재결화의 촉진은 법랑질우식 형성시에 liquid phase의 불소가 존재함으로써 나타나는 현상이며 불소의 미만성효과는 법랑질 결정체의 화학적 안정성을 의미한다. 이러한 재결화에
의해서 “arrested” 된 우식부위는 건전한 범
랑절에 비해서 오히려 보다 높은 우식저항
효과를 갖는다고 보고되었다.36)

그러나 범랑절에 있어서 불소의 함유정도
가 치아우식의 발생에 어느정도 효과를 나
타내는 가에 있어서는 여러 가지 다른 연구
결과가 있다. 즉 건전한 범랑절에 있어서의
불소가 유해도가 높은 수단화인화석으로 부
터 수단화인화석의 형성에 훼손작용을 하며
불소이온의 수단화인화석 또는 불식화인화석의 형
성이 불소포도포름을 없애는 가장 바람직
한 형태의 것으로 받아들여지는 견해가 있
으며6,8,23) 과거에는 주로 불소포도포시에 불소화
수단화인화석의 형성을 많이 유도하는 쪽으
로 연구가 진행되어 왔다.77,79)

그러나 Fejerskov61(1981)은 실제 불소화
된 수단화인화석의 형성은 단순히 소방이
이렇게 불소의 우식저항 효과를 모두 설명
할수는 없다고 하였으며, 수소화인화석에서
나타나는 불소이온의 활동성이 범랑절에 존
재하는 고통도의 불소에 비해서 더욱 중요
하다고 설명하였다. 고통도의 불소달항을 갖는
범랑절에서 저감도의 불소달항을 갖는
범랑절에 비해서 우식이환율이 낮게 나타난
다는 특별한 증거는 없다고 보고되었으며51,69).

Larson 등(1976)의 실험에서도 10ppm의
불소를 음료수에 첨가한 경우에는 범랑절에
존재하는 300-1700ppm의 불소에 비해서 우
식예방 효과가 더 좋은 것으로 보고된 바
있다. Ogaard 등(1988)에 의하면 순수한 불
소화인화석으로 구성된 상어의 범랑절을 이용
한 실험에서도 일부는 발생한다고 하였으며
low-pH 불소용액을 사용한 사람의 범랑절과
상어의 범랑절을 비교한 실험에서 상어의
범랑절에는 특별한 우식예방효과를 관찰할
수 없었는데 이것은 순수한 불소화인화석으로
구성된 상어의 범랑절에서 보다 사람의 범랑
절에서 불소포도포시의 reaction product인 CaF2의
형성이 보다 용이하기 때문인 것으로 보고
되었다44,60).

범랑절내의 불소의 농도가 우식의 발생과
적절적인 연관이 없다는 주장이 있으면 후에는
불소의 우식예체에 대한 효과가 loosely-bound fluoride와 firmly-bound fluoride의 개
념으로 많이 연구되었다. Loosely-bound fluo-
ride는 불소가 범랑질 표면과 접촉하면서 생
성되는 reaction products로서 주로 CaF2로
구성되고 범랑질 표면에 부착되는 불소를
의미하며 firmly-bound fluoride는 범랑질의
수산화인화석에 불소이온이 치환되어 생긴
불산화인화석의 불소를 의미한다.

건전한 범랑절에서의 불소할량은 표면측
2μm에서 1000ppm정도이며 가장 표층부위에
서 6000ppm 정도인 것으로 알려져 있으며36,50)
가장 표층부위 0.02-0.1μm에서 부터 상아질
방향으로 불소의 농도가 급속하게 감소한다
고 한다50. 이러한 고통도의 불소가 범랑절에
존재함에도 불구하고 건전한 범랑절에서 처
태의 작용에 의한 우식증이 생길 수가 있다.
 초기우식증인 white spot lesion에서의 불소
농도는 1000-3000ppm 정도로 건전한 범랑절
에 비해서 오히려 증가한 상태이나 우식증은
종종 진행되게 되며 무식부위에서의 불소농
도는 건전한 범랑절에 비해서 오히려 증가
되는 것으로 보고되고 있다50.

이상과 같은 보고를 통해서 보면 범랑절에
존재하는 많은 양의 불소가 반드시 우식에
대한 예방이나 역제를 의미하는것은 없다고
보인다. 범랑절에 존재하는 불소의 일부만이
우식의 역제에 기여한다는 보고가 있었으며5
36,49) 범랑절 표면에 침착된 “CaF2-like material로부터 유리되는 불소가 우식예체 효과와
관련이 있다고 알려지고 있다56,60,61)

범랑절 표면의 globular structure가 여러
학자들에 의해서 “CaF2-like material로 인
식되었으며12,39,45,48) CaF2 대신에 “CaF2-like material로 붙이는 이유는 구강 내에서 산산
염, 단백질 또는 다른 화합물에 의해서 심
하게 오염되기 때문이다50.

불소의 국소적인 도포에 의해서 CaF2가
생성되며 무식한 우식예제 효과가 있다는
보고가 있었으며50) 또한 in vitro 실험에서도
범랑절의 유해를 억제시킨다고 알려졌다1.

국소적인 불소포도포에 의해서 firmly-bound
fluoride의 양도 어느정도 증가되는 것으로 보고되었는데 이러한 firmly-bound fluoride 도 fluorapatite에 의해서 보호되는 CaF₂인 것으로 제안하기도 하였다. 이와 같이 loosely-bound fluoride의 중요성을 함께 복소도 포세에 firmly-bound fluoride의 증가가 이루어지며 이 또한 우식의 역제에 중요한 역할을 하는 것으로 in vitro 실험과 in vivo 실험에서 보고되었다.

Silicate cement와 처아의 결합면에서 이차 우식증의 발생률이 다른 수복재에 비해서 감소되며 이러한 효과의 주된 이유가 silicate cement로부터 유리되는 볼소에 의한 것으로 설명이 된 후에 amalgam, resin composites, 치면열구전색제들의 다양한 수복재료에 볼소가 첨가되기 시작하였다. 1972년에는 polycarboxylate cement의 adhesive property와 silicate cement의 볼소를 유리하는 성질을 결합하여 glass ionomer cement가 개발되었으며 Swartz등(1976)에 의해서 볼소를 첨가한 치면열구 전색제가 처음으로 보고되었다.

치면열구전색제의 항우식효과는 널리 알려져 있으며 이러한 효과가 볼소의 우식예방과 함께 이루어진다면 보다 더 항상된 우식예방 효과를 기대할 수 있는 장점으로 다양한 치면열구전색제가 소개되었 다.

1984년 Retief 등에 의한 연구에서 glass ionomer cement이 적용된 법률절에서 두통하게 볼소의 농도가 증가하였으며 glass ionomer cement와의 거리가 멀어질수록 볼소의 농도가 감소된 것으로 보고되었고 흡수된 볼소의 대부분이 firmly-bound fluoride인 것으로 추정되었다. 그러나 glass ionomer을 이용한 in vivo 실험이에서는 볼소를 유리하는 glass ionomer cement와 접점의 법랑절에서 볼소의 증가가 관찰되지 못하였다.

Tanaka 등(1987)은 methacryloyl fluoride-methyl methacrylate(MF-MMA) co-polymer resin을 사용한 실험에서 볼소의 농도가 법랑절 60μm 깊이에서도 두통하게 증가되었으며 70~80% 가량이 firmly-bound form으로 존재하였다고 보고하였다.

이와 같은 연구는 희은한 내용을 종합해보면 우식의 역제에 작용하는 볼소의 형태가 loosely-bound 또는 firmly-bound form 인지에 따라서 우식예방효과의 차이를 보이는 것으로 설명되고 있으며 볼소를 도포하는 방법에 따라서 법률절에 흡수되는 볼소의 형태에 영향을 미치게 되므로 우식예방 효과에 있어서 차이를 보이게 된다.

그러므로 본 연구의 목적은 APF, NaF 및 볼소유리 치면열구전색제의 서로 다른 볼소 적용 방법에서 법률절로 흡수되는 볼소의 형태를 조사하고 그에 따른 우식예방효과를 분석하는데 있다.

II. 실험재료 및 방법

가. 실험재료

교정치료를 목적으로 발행된 사람의 소구 척추 우식증이나 마모, 색소침착, 미세균열 등이 없는 치아를 실험 전까지 생리적 식염수에 보관하였으며 6개의 실험군에 각각 10 개씩을 배정하여 사용하였다. 실험재료는 볼소를 유리하는 치면열구 전색제로 Fluoroshield(L.D. Gaulk, Milford, DE)를 사용하고
국소도포용 붐소로 1.23% APF(Sultan Dental Products, Englewood, NJ)와 0.05% NaF를 각각 사용하였다.

붐소함유망을 측정하기 위한 enamel biopsy용 acid로 0.5M HCl로, Phosphorus 농도를 측정하기 위해서 Fiske & SubbaRow Solution(Sigma Diagnostics, St. Louis, MO 63178, USA)을 각각 사용하였으며 loosely-bound fluoride를 제거하기 위한 용액으로 Caslavskà등(1975)이 제안한 방법에 따라서 1M KOH용액을 사용하였다.

나. 실험방법
1. 실험군 설정
APF를 도포한 군을 실험 1군으로, NaF를 도포한 군을 실험 2군으로, 붐소를 유리하는 정색제를 도포한 군을 실험 3군으로 각각 설정하였으며 각각의 치아를 균일성 방향으로 이동분하여 협·설령어 상판없이 한쪽 면을 실험군으로 분할된 반대쪽 면을 대조군으로 사용하였다.

3개의 실험군에서 무작위로 10개씩의 시편을 선택하고 각 군의 KOH-Extract군으로 각각 실험 4, 5, 6군으로 설정하고 실험 1~3군과 같은 방법으로 대조군을 설정하였다.

2. 실험재료 도포방법
실험부위를 사용할 면을 붐소를 함유하지 않은 pumice로 천을 사용하여 부드럽게 씹어낸 후 각 실험군에서 각각의 실험제료를 아래와 같은 방법으로 도포한다.
(가) APF 도포군
이동분된 치아의 혈청이나 시편 중 한쪽 면을 무작위로 선택하여 5ml의 1.23% APF gel용액에 30분간 soaking시킨 후 37℃, 5ml의 증류수에서 24시간 보관한 후 건조시킨다.
(나) NaF 도포군
이동분된 치아의 혈청이나 시편 중 한쪽 면을 무작위로 선택하여 5ml의 0.05% NaF 용액에 24시간 soaking시킨 후 37℃, 5ml의 증류수에서 24시간 보관한 후 건조시킨다.

(다) Fluorosheild 도포군
산부석(acid etching)을 하지 않은 상태에서 범람질 표면이 모두 남아도록 Fluorosheild를 도포하고 5ml의 증류수에 30일간 37℃에서 보관한다. 30일간의 Incubation기간이 지난 후에 도포된 Fluorosheild를 범람질 표면을 보존하면서 모두 제거하고 37℃, 5ml의 증류수에서 24시간 보관한 후 건조시킨다.

3. Loosely bound Fluoride를 제거한 실험군
(가) APF-KOH extraction군
APF 도포군 중에서 10개의 시편을 무작위로 선택하여 1M KOH 용액 10ml에 24시간 동안 보관한 후 다시 증류수에서 24시간 보관하여 KOH 용액을 완전히 제거하고 건조시킨다.
(나) NaF-KOH extraction군
NaF 도포군 중에서 10개의 시편을 무작위로 선택하여 1M KOH 용액 10ml에 24시간 동안 보관한 후 다시 증류수에서 24시간 보관하여 KOH 용액을 완전히 제거하고 건조시킨다.
(다) Fluorosheild-KOH extraction군
Fluorosheild 도포군 중에서 10개의 시편을 무작위로 선택하여 1M KOH 용액 10ml에 24시간 동안 보관한 후 다시 증류수에서 24시간 보관하여 KOH 용액을 완전히 제거하고 건조시킨다.

4. Enamel Biopsy
각각의 시편 범람질 표면에서 enamel biopsy를 시행할 부위에 직경 1/8 inch의 hole을 형성한 adhesive tape(No. 471, 3M Company, Minneapolis, Minn)를 부착하고 hole 주위는 amalgam burnisher로 사용하여 adhesive tape가 완전히 밀착되도록 한다. 도출된 범람질 표면에 10µl의 0.5M HCl로 용액을 micropipette를 사용하여 펑크트한 후 15초간 무색시키고 다시 micropipette를 사용하여 0.5M HCl로 용액을 범람질 표면으로부터 제거한 후 10ml 비이어에 올린다. 도출된 범람질
표면에 다시 10μ리터의 증류수를 뿌어뜨린 후 15 초간 위치시키고 micropipette를 사용하여 제거한 후 동일한 비어키에 옮겨 담는다. 위의 과정을 3회 반복하고 비어키 보관한 후 60 μ리터의 modified buffer(TISAB, Orion Research Inc., Cambridge, Mass.) 용액을 첨가한다.

5. 범람질에 흡수된 불소량의 측정
Enamel biopsy를 통하여 추출된 비어키의 용액을 총량이 5ml가 되도록 증류수를 첨가하여 휘석한 후 magnetic stirring하에서 Fluoride Electrode(Model 9609, Orion Research, Inc., Cambridge, MA)를 사용하여 범람질로부터 부식되어 유리된 불소농도를 측정하였다. 기록된 측정치가 전압값(mV)이므로 불소의 농도로 환산하기 위해서 농도 100ppm의 불소 표준용액 (100±.0.5ppm, ATI Orion, Boston, MA 02129, USA)을 10배, 100배, 1000배 로석하여 mV값을 기록하여 표준곡선 (Fig. 1)을 만들고 이때 만들어진 적선 회귀방정식을 이용하여 불소의 농도로 환산하였다.

6. 탈화된 범람질의 양 및 깊이
각 실험군 및 대조군에서 불소의 농도를 측정한 후 탈화된 충 범람질의 양을 측정하기 위해서 Fiske & SubbaRow method를 사용하여 분광광도계(Spectronic 1201, Milton Roy Company, USA)를 통해서 무기 인(Inorganic phosphorus)의 농도를 측정하였다. 분광광도계에서 측정된 값을 흡광도값이므로 무기 인의 농도로 환산하기 위해서 NaH₂PO₄를 0, 0.25, 0.5, 0.75mmol/l에서 흡광도값을 기록하여 표준곡선 (Fig. 2)을 만들고 이때 만들어진 직선 회귀방정식을 이용하여 무기 인의 농도를 계산하였다.

범람질에는 평균 17.4% by weight의 Phosphorus가 포함되어 있다는 가정 하에서 탈
화된 충 범람질의 양을 계산하였으며 범람 질의 평균밀도(2.95 g/cm³)를 사용하여 탈화
된 범람질의 깊이를 계산하였다.

\[
\text{Depth of etch(μm)} = \frac{\text{Weight of enamel dissolved(μg)}}{\text{Density of enamel} \times \text{surface area(mm²)}}
\]

7. Scanning Electron Microscopy
각각의 불소 도포군과 치면열구전색제 도
포군에서 범람질 표면의 CaF₂ coating 양상을 조사하였다. 각 시편의 제작은 각 실험군의
도포방법과 동일하게 제작하였으나 APF 및 NaF 도포군에 있어서는 30분 및 24시간 도
포한 양상을 함께 조사하였다. 각 시편을 alu
minum stubs에 부착하고 desiccator에서 24 시간 건조시킨 후 Ion Sputter(HITACHI E-
1010, HITACHI LTD., Tokyo, Japan)에서 18
nm의 Platinum Coating을 시행하고 25kV에서

![Fluoride Standard Curve](image)

Fig. 1. Calibration curve of F⁻ concentration
Scanning Electron Microscope (HITACHI S-2460N, HITACHI LTD., Tokyo, Japan)에서 x 5000, x20,000의 배율로 검사하였다.

또한 대조군과의 비교를 위해서 정상적인 법량질 표면을 동일한 배율로 함께 조사하였다.

8. 실험자료의 분석

실험군에서 측정된 법량질에 흡수된 불소의 양 및 enamel biopsy에 의해서 부식된 법량질의 깊이를 각각의 대조군과 통계분석 프로그램 SAS를 사용하여 부호순위검정법 (signed rank test)으로 비교분석하였으며 법량질에 존재하는 불소의 양과 부식되는 법량질사이의 상관관계를 조사하기 위하여 피어슨 회귀분석법 (Pearson Correlation Test) 으로 분석하였고 P값 0.05이하를 통계적으 로 유의한 차이로 판정하였다.

III. 실험결과

가. 법량질에 흡수된 총 불소량

법량질에 흡수된 total fluoride amount는
APF를 도포한 군 (P=0.002)과 및 NaF를 도포한 군 (P=0.002)에서 두통적인 증가를 보였으나 불소유리 치면영구전색제의 경우 대조군과 비교하여 두통한 증가를 찾아볼 수 없었다. (P=0.7695) (Table 1-3)

나. 법량질에 흡수된 firmly-bound fluoride의 양

Firmly-bound fluoride의 경우에는 NaF group에서 어느정도 증가된 것을 관찰할 수 있었으나 통계적으로 유의한 차이가 없었고 (P=0.0898) APF를 도포한 군 (P=0.1602) 및 불소유리 치면영구전색제를 도포한 경우 (P=0.1602)에도 특별한 증가가 이루어 지지 않았다. (Table 4-6)

다. Total fluoride amount에 의한 법량질의 내산성 효과

Total fluoride amount가 증가된 APF 도포군 (P=0.002) 및 NaF 도포군 (P=0.0039)에서 enamel biopsy에 의한 법량질의 탈산량이 감소됨으로써 법량질의 내산성이 두통하게 증가되는 것이 관찰되었으며 lesion depth의 비교에 있어서도 두통하게 lesion depth가 감소되는 것이 관찰되었다. 그러나 total fluoride의 증가를 관찰할 수 없었던 불소유리 치면영구전색제의 경우에는 enamel biopsy에 의해서 부식된 법량질의 양 및 lesion depth에서 대조군과 비교한 두통한 차이는 발견할 수 없었다. (P=0.4316) (Table 7-9)

라. Firmly-bound fluoride에 의한 법량질의 내산성 효과

Firmly-bound fluoride의 증가를 관찰할 수 없었던 APF 도포군 (P=0.3320) 및 불소유리
Table 1. APF group: Total amount of fluoride in enamel

<table>
<thead>
<tr>
<th>실험 군</th>
<th>F⁻ (ppm)</th>
<th>F⁻ per µg enamel (ppm)</th>
<th>대조 군</th>
<th>F⁻ (ppm)</th>
<th>F⁻ per µg enamel (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>490.31</td>
<td>1.47</td>
<td></td>
<td>456.24</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>1353.95</td>
<td>3.79</td>
<td></td>
<td>1211.56</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>1306.31</td>
<td>3.42</td>
<td></td>
<td>347.25</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>1051.13</td>
<td>3.00</td>
<td></td>
<td>619.04</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>1040.65</td>
<td>3.17</td>
<td></td>
<td>435.00</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>339.68</td>
<td>0.91</td>
<td></td>
<td>202.44</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>1507.22</td>
<td>4.39</td>
<td></td>
<td>702.42</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>1085.43</td>
<td>3.00</td>
<td></td>
<td>540.33</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>1406.26</td>
<td>4.01</td>
<td></td>
<td>686.36</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>1385.45</td>
<td>3.78</td>
<td></td>
<td>953.10</td>
<td>2.47</td>
</tr>
<tr>
<td></td>
<td>1096.639±394.9652</td>
<td>3.094±1.1061</td>
<td>615.374±295.9018</td>
<td>1.540±0.7670</td>
<td></td>
</tr>
</tbody>
</table>

(P = 0.002)

Table 2. NaF group: Total amount of fluoride in enamel

<table>
<thead>
<tr>
<th>실험 군</th>
<th>F⁻ (ppm)</th>
<th>F⁻ per µg enamel (ppm)</th>
<th>대조 군</th>
<th>F⁻ (ppm)</th>
<th>F⁻ per µg enamel (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>770.65</td>
<td>2.07</td>
<td></td>
<td>318.76</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>681.28</td>
<td>1.62</td>
<td></td>
<td>285.64</td>
<td>0.57</td>
</tr>
<tr>
<td></td>
<td>351.85</td>
<td>0.97</td>
<td></td>
<td>255.96</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>301.56</td>
<td>0.80</td>
<td></td>
<td>231.45</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>1008.11</td>
<td>2.38</td>
<td></td>
<td>897.01</td>
<td>1.94</td>
</tr>
<tr>
<td></td>
<td>1551.77</td>
<td>4.60</td>
<td></td>
<td>771.90</td>
<td>1.99</td>
</tr>
<tr>
<td></td>
<td>489.29</td>
<td>1.28</td>
<td></td>
<td>380.38</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>534.78</td>
<td>1.40</td>
<td></td>
<td>355.59</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>782.28</td>
<td>1.88</td>
<td></td>
<td>719.73</td>
<td>1.63</td>
</tr>
<tr>
<td></td>
<td>715.05</td>
<td>2.03</td>
<td></td>
<td>514.87</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td>718.662±362.2398</td>
<td>1.903±1.0726</td>
<td>473.129±240.0149</td>
<td>1.132±0.5567</td>
<td></td>
</tr>
</tbody>
</table>

(P = 0.002)

155
Table 3. Fluoroshield group: Total amount of fluoride in enamel

<table>
<thead>
<tr>
<th>실험군</th>
<th>F⁻ (ppm)</th>
<th>F⁻ per μg enamel (ppm)</th>
<th>대조군</th>
<th>F⁻ (ppm)</th>
<th>F⁻ per μg enamel (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>450.85</td>
<td>0.92</td>
<td>517.76</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1043.51</td>
<td>2.55</td>
<td>1675.10</td>
<td>4.63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1401.10</td>
<td>3.19</td>
<td>2360.00</td>
<td>6.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1477.20</td>
<td>4.09</td>
<td>1428.30</td>
<td>3.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1305.69</td>
<td>0.60</td>
<td>1202.89</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1836.50</td>
<td>5.37</td>
<td>1408.36</td>
<td>4.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1832.06</td>
<td>5.62</td>
<td>1323.74</td>
<td>3.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1956.12</td>
<td>5.39</td>
<td>1508.57</td>
<td>4.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1552.00</td>
<td>4.26</td>
<td>1667.28</td>
<td>4.41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1751.03</td>
<td>4.83</td>
<td>1571.53</td>
<td>4.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1460.606 ± 452.02</td>
<td>3.982 ± 1.3999</td>
<td>1466.353 ± 458.2318</td>
<td>4.053 ± 1.3275</td>
<td></td>
</tr>
</tbody>
</table>

(P = 0.7695)

Table 4. APF group: Amount of firmly-bound fluoride in enamel

<table>
<thead>
<tr>
<th>실험군</th>
<th>F⁻ (ppm)</th>
<th>F⁻ per μg enamel (ppm)</th>
<th>대조군</th>
<th>F⁻ (ppm)</th>
<th>F⁻ per μg enamel (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1578.80</td>
<td>3.74</td>
<td>1435.22</td>
<td>3.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>952.14</td>
<td>2.50</td>
<td>790.36</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1465.65</td>
<td>3.62</td>
<td>1565.21</td>
<td>4.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1069.81</td>
<td>2.66</td>
<td>709.19</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1456.96</td>
<td>3.80</td>
<td>1424.82</td>
<td>3.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2009.60</td>
<td>4.86</td>
<td>1781.98</td>
<td>4.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1452.35</td>
<td>3.41</td>
<td>1734.20</td>
<td>4.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1895.93</td>
<td>4.69</td>
<td>1565.21</td>
<td>4.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1596.76</td>
<td>3.75</td>
<td>1545.81</td>
<td>3.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>727.49</td>
<td>1.97</td>
<td>547.28</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1420.55 ± 402.2421</td>
<td>3.50 ± 0.9156</td>
<td>1308.928 ± 452.8341</td>
<td>3.218 ± 1.1652</td>
<td></td>
</tr>
</tbody>
</table>

(P = 0.1602)
Table 5. NaF group: Amount of firmly-bound fluoride in enamel

<table>
<thead>
<tr>
<th>실험군</th>
<th>대조군</th>
</tr>
</thead>
<tbody>
<tr>
<td>F⁻ (ppm)</td>
<td>F⁻ per 1μg enamel (ppm)</td>
</tr>
<tr>
<td>752.77</td>
<td>1.86</td>
</tr>
<tr>
<td>639.16</td>
<td>1.71</td>
</tr>
<tr>
<td>536.22</td>
<td>1.29</td>
</tr>
<tr>
<td>525.11</td>
<td>1.36</td>
</tr>
<tr>
<td>453.63</td>
<td>1.17</td>
</tr>
<tr>
<td>733.70</td>
<td>1.87</td>
</tr>
<tr>
<td>515.82</td>
<td>1.23</td>
</tr>
<tr>
<td>417.85</td>
<td>1.02</td>
</tr>
<tr>
<td>1487.51</td>
<td>4.08</td>
</tr>
<tr>
<td>935.28</td>
<td>2.11</td>
</tr>
<tr>
<td>699.705±318.8154</td>
<td>1.77±0.8873</td>
</tr>
</tbody>
</table>

(P = 0.0898)

Table 6. Fluoroshield group: Amount of firmly-bound fluoride in enamel

<table>
<thead>
<tr>
<th>실험군</th>
<th>대조군</th>
</tr>
</thead>
<tbody>
<tr>
<td>F⁻ (ppm)</td>
<td>F⁻ per 1μg enamel (ppm)</td>
</tr>
<tr>
<td>1781.63</td>
<td>5.12</td>
</tr>
<tr>
<td>525.11</td>
<td>1.36</td>
</tr>
<tr>
<td>2249.00</td>
<td>5.41</td>
</tr>
<tr>
<td>2381.74</td>
<td>6.21</td>
</tr>
<tr>
<td>1822.05</td>
<td>4.75</td>
</tr>
<tr>
<td>1197.00</td>
<td>2.89</td>
</tr>
<tr>
<td>1368.50</td>
<td>3.25</td>
</tr>
<tr>
<td>1613.98</td>
<td>3.57</td>
</tr>
<tr>
<td>2953.86</td>
<td>7.64</td>
</tr>
<tr>
<td>2932.31</td>
<td>7.11</td>
</tr>
<tr>
<td>1882.518±767.1029</td>
<td>4.731±1.9781</td>
</tr>
</tbody>
</table>

(P = 0.1602)
Table 7. APF group: Amount of enamel removed by acid biopsy

<table>
<thead>
<tr>
<th>실험 군</th>
<th>대조 군</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel (mg)</td>
<td>Depth of Enamel Removed (µm)</td>
</tr>
<tr>
<td>0.3345</td>
<td>14.33</td>
</tr>
<tr>
<td>0.3575</td>
<td>15.32</td>
</tr>
<tr>
<td>0.3816</td>
<td>16.35</td>
</tr>
<tr>
<td>0.3506</td>
<td>15.02</td>
</tr>
<tr>
<td>0.3282</td>
<td>14.06</td>
</tr>
<tr>
<td>0.3724</td>
<td>15.96</td>
</tr>
<tr>
<td>0.3437</td>
<td>14.73</td>
</tr>
<tr>
<td>0.3621</td>
<td>15.52</td>
</tr>
<tr>
<td>0.3506</td>
<td>15.02</td>
</tr>
<tr>
<td>0.3667</td>
<td>15.71</td>
</tr>
<tr>
<td>0.35479±0.016694</td>
<td>15.202±0.6796</td>
</tr>
</tbody>
</table>

(P=0.002)

Table 8. NaF group: Amount of enamel removed by acid biopsy

<table>
<thead>
<tr>
<th>실험 군</th>
<th>대조 군</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel (mg)</td>
<td>Depth of Enamel Removed (µm)</td>
</tr>
<tr>
<td>0.3724</td>
<td>15.96</td>
</tr>
<tr>
<td>0.4213</td>
<td>18.05</td>
</tr>
<tr>
<td>0.3686</td>
<td>15.59</td>
</tr>
<tr>
<td>0.3747</td>
<td>16.06</td>
</tr>
<tr>
<td>0.4236</td>
<td>18.15</td>
</tr>
<tr>
<td>0.3374</td>
<td>14.46</td>
</tr>
<tr>
<td>0.3822</td>
<td>16.38</td>
</tr>
<tr>
<td>0.3833</td>
<td>16.43</td>
</tr>
<tr>
<td>0.4161</td>
<td>18.83</td>
</tr>
<tr>
<td>0.3517</td>
<td>15.07</td>
</tr>
<tr>
<td>0.38265±0.029476</td>
<td>16.498±1.4179</td>
</tr>
</tbody>
</table>

(P=0.0039)
Table 9. Fluoroshield group: Amount of enamel removed by acid biopsy

<table>
<thead>
<tr>
<th>실험 군</th>
<th>대조 군</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel (mg)</td>
<td>Depth of Enamel Removed (μm)</td>
</tr>
<tr>
<td>0.4891</td>
<td>20.96</td>
</tr>
<tr>
<td>0.4092</td>
<td>17.54</td>
</tr>
<tr>
<td>0.4397</td>
<td>18.84</td>
</tr>
<tr>
<td>0.3615</td>
<td>15.49</td>
</tr>
<tr>
<td>0.3626</td>
<td>15.54</td>
</tr>
<tr>
<td>0.3420</td>
<td>14.65</td>
</tr>
<tr>
<td>0.3259</td>
<td>13.96</td>
</tr>
<tr>
<td>0.3632</td>
<td>15.57</td>
</tr>
<tr>
<td>0.3644</td>
<td>15.61</td>
</tr>
<tr>
<td>0.3626</td>
<td>15.54</td>
</tr>
<tr>
<td>0.38202± 0.049579</td>
<td>16.37± 2.1258</td>
</tr>
</tbody>
</table>

(P=0.4316)

Table 10. APF-KOH Extract group: Amount of enamel removed by acid biopsy

<table>
<thead>
<tr>
<th>실험 군</th>
<th>대조 군</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel (mg)</td>
<td>Depth of Enamel Removed (μm)</td>
</tr>
<tr>
<td>0.4218</td>
<td>18.08</td>
</tr>
<tr>
<td>0.3810</td>
<td>16.33</td>
</tr>
<tr>
<td>0.4046</td>
<td>17.34</td>
</tr>
<tr>
<td>0.4029</td>
<td>17.27</td>
</tr>
<tr>
<td>0.3833</td>
<td>16.43</td>
</tr>
<tr>
<td>0.4138</td>
<td>17.73</td>
</tr>
<tr>
<td>0.4259</td>
<td>18.25</td>
</tr>
<tr>
<td>0.4040</td>
<td>17.31</td>
</tr>
<tr>
<td>0.4259</td>
<td>18.25</td>
</tr>
<tr>
<td>0.3684</td>
<td>15.79</td>
</tr>
<tr>
<td>0.40316± 0.019976</td>
<td>17.278± 0.8547</td>
</tr>
</tbody>
</table>

(P=0.3320)
Table 11. NaF-KOH Extract group: Amount of enamel removed by acid biopsy

<table>
<thead>
<tr>
<th>실험군</th>
<th>대조군</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel (mg)</td>
<td>Depth of Enamel Removed (µm)</td>
</tr>
<tr>
<td>0.4052</td>
<td>17.36</td>
</tr>
<tr>
<td>0.3747</td>
<td>16.06</td>
</tr>
<tr>
<td>0.1449</td>
<td>17.78</td>
</tr>
<tr>
<td>0.3856</td>
<td>16.53</td>
</tr>
<tr>
<td>0.3891</td>
<td>16.67</td>
</tr>
<tr>
<td>0.3925</td>
<td>16.82</td>
</tr>
<tr>
<td>0.4207</td>
<td>18.03</td>
</tr>
<tr>
<td>0.4080</td>
<td>17.49</td>
</tr>
<tr>
<td>0.3644</td>
<td>15.61</td>
</tr>
<tr>
<td>0.4443</td>
<td>19.04</td>
</tr>
<tr>
<td>0.39994± 0.023556</td>
<td>17.139± 1.0102</td>
</tr>
</tbody>
</table>

(P = 0.1934)

Table 12. Fluorshield-KOH Extract group: Amount of enamel removed by acid biopsy

<table>
<thead>
<tr>
<th>실험군</th>
<th>대조군</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enamel (mg)</td>
<td>Depth of Enamel Removed (µm)</td>
</tr>
<tr>
<td>0.3483</td>
<td>14.93</td>
</tr>
<tr>
<td>0.3856</td>
<td>16.53</td>
</tr>
<tr>
<td>0.4155</td>
<td>17.81</td>
</tr>
<tr>
<td>0.3833</td>
<td>16.43</td>
</tr>
<tr>
<td>0.3839</td>
<td>16.45</td>
</tr>
<tr>
<td>0.4144</td>
<td>17.76</td>
</tr>
<tr>
<td>0.4213</td>
<td>18.05</td>
</tr>
<tr>
<td>0.4523</td>
<td>19.38</td>
</tr>
<tr>
<td>0.3868</td>
<td>16.58</td>
</tr>
<tr>
<td>0.4126</td>
<td>17.68</td>
</tr>
<tr>
<td>0.4004± 0.028648</td>
<td>17.16± 1.2255</td>
</tr>
</tbody>
</table>

(P = 0.3008)
치면열구전색체의 경우 \(P=0.1934 \)에는 물론 약간의 firmly-bound fluoride의 증가를 보였던 NaF 도포군에서도 enamel biopsy에 의해서 부식된 범람질의 양이나 lesion depth에 있어서 특별한 차이를 찾아볼 수 없었다. \(P=0.3008 \) (Table 10-12)

마. 범람질의 불소량과 탈화와의 관계
피어슨 회귀분석법에 의해서 조사한 결과 범람질에 존재하는 total fluoride amount와 lesion depth 또는 부식된 범람질의 양 사이에서 유의한 상관관계는 발견할 수 없었으며 \(P=0.1048 \) (Fig. 3) 범람질에 존재하는 firmly-bound fluoride와의 사이에서도 특별한 상관관계는 찾을 수 없었다. \(P=0.8074 \) (Fig. 4)

바. Scanning Electron Microscopy
APF, NaF, fluoride-releasing sealant군 모두에서 정상적인 범람질 표면(Fig. 6, 7)과 비교하였을 때 CaF\(_2\)의 surface coating이 뚜렷하게 관찰되었다. (Fig. 8-13) 그러나 surface coating의 양상은 각각의 군에서 서로 다르게 관찰되었다. 즉 APF를 30분 도포한 경우에는 NaF를 30분 도포한 것과 비교하여 (Fig. 10, 11) 범람질 표면에 CaF\(_2\)의 형성에 의한 surface coating이 완전하게 덮이지는 않는 것으로 관찰되었다. 0.1-0.5μm 정도 크기의 spherical globules이 비교적 고르게 범람질 표면에 분산되어 나타나고 직사각형 형태의 CaF\(_2\)의 형성도 함께 관찰되었으며 때로는 이러한 CaF\(_2\)의 형성이 밀집된 형태로 나타나기도 하였다. NaF를 30분 도포한 경우에는 CaF\(_2\)의 형성이 APF와 비교하여 보다 조밀한 양상을 보였으나 globules의 크기가 0.1μm 이하로서 전 범람질표면에 coating된 양상으로 관찰되었다. 치면열구전색체 도포군의 경우에는 NaF 도포군과 비교적 CaF\(_2\)의 형성에 의한 surface coating이 비교적 유사하게 관찰되었고 CaF\(_2\)결정의 크기는 APF군에 비해서 작은 것으로 조사되었다. APF 및 NaF를 24시간 도포한 경우에는 CaF\(_2\)의 결정의 크거나 surface coating양상이 비교적 유사하게 관찰되었는데 각각 30분씩 처리한 경우와 비교하여 NaF군에서는 CaF\(_2\)결정의 형성이 보다 뚜렷한 형태로 나타나며 APF군

![Pearson Correlation Coefficients](image)

Fig. 3. Pearson correlation between total fluoride amount(ppm) and lesion depth
Fig. 4. Pearson correlation between firmly-bound fluoride (ppm) and lesion depth

Fig. 5. Fluoride Release from Fluoroshield

IV. Conclusion and Discussion

The use of the dental surface coating CaF₂ led to a significant decrease in fluoride release, likely due to its ability to form a protective layer on the tooth surface. The observed decrease in fluoride release is consistent with previous studies, highlighting the potential of this coating to reduce fluoride leaching from dental fluorides.

Moreover, the study demonstrated that the fluoride release rate was dependent on the coating thickness and the fluoride concentration in the applied solution. Further research is needed to optimize the formulation and application method to achieve optimal fluoride retention while minimizing the risk of cavities.

This research underscores the importance of developing innovative dental coatings that can effectively manage fluoride release and improve the efficacy of fluoride-containing products. Further investigations are warranted to explore the long-term benefits and potential applications of this novel coating technology in dental care.

범황질의 불소합유정도를 측정하는 최근의 방법으로 범황질 표면을 연속적으로 이미징하는 engraving biopspy 방법이 많이 사용되고 있으며 Casalvka 등(1975)에 의해서 1M KOH 용액에서 2시간동안 불소도포된 치아를 처리하는 방법으로 CaF2의 효과적인 제거가 이루어졌다고 보고된 이후 대부분의 실험에서 Casalvka의 방법이 CaF2의 제거에 사용되었고 이러한 구조의 방법과 acid etching technique를 사용하여 loosely-bound fluoride와 firmly-bound fluoride에 대한 분석이 가능함을 여러 논문에서 보여준 바 있다. 45, 50

Loosely-bound fluoride로 지칭되는 CaF2는 전자현미경상에서 spherical globules의 형태로 관찰되며50 globules의 양과 크기는 불소용액의 pH와 농도 및 용액과의 접촉시간에 의해서 영향을 받는다고 하는데 pH가 낮을수록 불소용액의 농도가 높을수록 또한 용액과의 접촉시간이 길수록 증가되고 하며50 이들 중 접촉시간의 영향이 가장 큰 것으로 보인다고 보고된 바 있다. 본 연구에서도 불소의 농도가 sealant group의 경우와 같이 지나치게 낮은 경우에는 CaF2의 형성이 전자현미경상에서는 투명하게 관찰되었으나 불소전극을 사용한 불소농도의 측정에서는 유의하게 증가되지 않은 것으로 나타났으며 NaF를 30분과 24시간 도포한 경우를 비교하면 24시간 도포한 경우에도 CaF2의 형성이 훨씬 증가하고 투명하게 관찰되며 APF를 30분과 24시간 도포한 경우에도 24시간 도포한 경우에서 전 범황질 표면에 CaF2의 형성이 투명하게 관찰되었고 NaF와 APF를 24시간 도포한 경우를 비교하면 비교적 유사한 양상을 보며 불소와의 접촉시간이 CaF2의 형성에 상당히 중요한 역할을 하는 것으로 생각된다. Ca++ 이온의 존재에도 CaF2의 형성에 영향을 미치는 것으로 설명되고 있는데 이 것은 용액의 pH를 낮추으면 인해서 범황질의 용해를 통한 Ca++이온이 유도적으로 CaF2의 증가를 가져온다고 한다. CaF2 globules의 직경은 4-15nm에서 3μm까지 다양하게 나타나며 enamel prism의 함몰부위 등에서 특히 많이 관찰되는 것으로 알려지고 있다61. 본 실험에서는 관찰된 globular surface는 Larsen 등(1978)에 의해서 설명한 layer와 비교적 일치된 모습을 보여주었고 globules의 크기는 주로 0.1-0.5μm의 크기가 주를 이루었다. 일반적으로 neutral fluoride solution을 사용한 경우는 2-5분 안에 비교적 적은 양의 CaF2가 형성된다고 알려져 있지만28 또한 불소의 농도를 2%에서 0.2%이하로 낮추는 경우에도 CaF2의 형성이 감소된다고 한다29. 한편 CaF2의 형성과 함께 일부는 fluorapatite의 형태로 약 50μm의 깊이까지 영구적으로 흡수된다고 하는데6-17, 70 본 연구에서 firmly-bound fluoride의 투명한 증가는 볼 수 없었다. 일반적으로 CaF2의 우석역효과는 산도의 조절적 가능한 불소의 저장고로서 작용하거나 우석이 진행되려고 할 때 acid-resistant barrier를 작용함으로써 나타난다고 한다40. Arends(1975)는 불소를 유리하는 lacquer를 사용한 실험에서 ADF를 사용한 경우에는 초기에 침착된 불소량이 많으나 firmly-bound된 불소의 경우에는 fluoride lacquer에서 보다 많은 형성을 보이는 것으로 보고하였다. Retief 등(1983)의 실험에서도 Duraphath(Resin Varnish)와 Fluor-Protector(Polyurethane Varnish)를 처리한 경우에는 APF를 도포한 경우에 비해서 보다 많은 양의 fluorapatite가 형성될을 보고하였고 APF의 경우에는 주로 CaF2의 형성이 주를 이루었다고 하였다. 또한 Varnish의 경우 4시간 동안의 접촉에서 최대치의 불소첨가가 이루어진다고 하였다. 즉 일반적으로 범황질 표면에 불소를 유리하는 제료가 지속적으로 접촉하고 있는 경우 firmly-bound fluoride의 증가를 가져올 수 있는 것으로 설명되고 있으나 본 연.

본 연구에 몰소유리 치면염구 전색제로 사용된 fluoroshield는 sodium fluoride를 포함하고 있는 modified BIS-GMA type의 filled sealant로서 Cooley(1990) 등에 의하면 도포 후 1~2일 동안에 비교적 많은 양의 몰소를 유리하고 6~7일에 있어서 약 1μg/cm²(0.41 ppm)의 몰소를 유리하는 것으로 보고되었는데 Fig. 5 본 연구에서 사용된 기간 및 농도가 결과에 영향을 미친 것으로 보인다.

최근에 가장 많이 사용되고 있는 acidulate phosphate fluoride(APF)의 경우 많은 양의 CaF₂를 형성한다고 알려지고 있으나 그 유지여부에 대해서는 수일에서 3개월 등으로 다양하게 보고되고 있다[15,16,21]. APF의 일반적인 formulation은 0.1M orthophosphoric acid에 1.23% fluoride를 sodium fluoride와 hydrogen fluoride의 형태로 점착함으로써 pH 3.2의 산도를 유지하도록 구성되어서 몰소가 법랑질에 흡수되는 양과 속도를 증가시키는 목적으로 개발되었다. APF에 의한 몰소의 흡수는 2단계로 나타나는데 처음에는 APF의 acidity에 의해서 법랑질이 빠르게 용해되고 다시 fluoride-rich reaction products가 법랑질 표면에 부착되게 되며 이러한 fluoride-rich surface coating으로부터 서서히 법랑질에 몰소가 첨투하게 된다. APF는 NaF에 비해서 건전한 법랑질과 우식부위에서 모두 NaF에 비해 보다 많은 양의 몰소를 법랑질에 첨투시키는 것으로 보고된 바 있으며20 APF와 NaF 모두 우식예방효과를 보이나 APF가 보다 난은 효과를 보인다고 하였다. 본 실험의 결과를 통해서 보면 APF 및 NaF가 모두 우식예제 효과를 보이는데 임상적으로 사용되는 농도나 빈도가 다르기 때문에 직접적인 비교는 어렵다고 하겠다.

일반적으로 CaF₂가 구강내에 건전한 법랑질 표면에서 어느정도 유지되는 가에는 서로 다른 많은 견해가 있는데 상당량의 몰소가 24시간내에 소실되며 극히 일부만이 영구적으로 보존된다는데 보고가 있는 반면[26] 최소한 2주 정도는 유지되는 것으로 보고되고 있다고 한다[46,47]. 한편 인공우식을 이용한 실험이에서 우식을 유도한 법랑질 표면에서 건전한 법랑질의 경우보다 많은 양의 몰소가 검출되었으며 또한 상당량이 alkali-insoluble form으로 검출되었는데 법랑질 우식표면의 porosity와 plaque covering이 몰소의 유지에 기여하는 것으로 보고되었다[46,47].

일반적으로 구강내에서 CaF₂의 용해는 알려진 것보다 획선 느린 것으로 보이며 이에 대한 여러 견해가 있다. Pellicle protein의 coating에 의한 작용으로 설명되는가 하면20 CaF₂가 주로 prism의 depression을 따라서 형성되기 때문에 평평면에 형성되는 경우에 비해서 기계적인 제거가 보다 어렵다고 설명되기도 하였다[40]. 한편 Kanayama 등(1983)은 calcium과 phosphate ion의 remineralizing system에 의해서 insoluble surface complex가 형성되며 이러한 작용에 의해서 CaF₂의 용해가 억제된다고 보고하였다. 이와같이 CaF₂가 구강내에서 단시간 내에 바로 용해되지 않고 남아있다면 본 연구에서 조사한 바와같이 NaF를 양처용액으로 구강내에서 반복해서 사용할 경우 CaF₂의 형성을 축진하여 우식의 예방효과를 보일 것으로 생각된다.

Clarkson 등(1988)은 우식부위에서의 lesion depth 및 fluoride concentration 사이에 직접적인 연관이 있다고 설명하였으며 이러한 복소는 복소도포액에 의해서 얻어진다고 하였다. 본 연구의 결과를 통해서 살펴보면 lesion
depth와 firmly-bound fluoride 사이에는 특별한 연관성을 찾기 어려웠으며 total fluoride amount 와 lesion depth 사이에 비교적 낮은 유의수준에서 상관관계를 나타내는 것으로 보아 loosely-bound fluoride 와 lesion depth 사이에는 밀접한 관계가 있는 것으로 추측된다. Hydroxyapatite powder를 이용한 실험에 의하면 powder내의 1000ppm의 불소보다 용액 내의 1ppm의 불소가 apatite의 dissolution에 미치는 영향이 더욱 큰 것으로 보고된 바 있는데 이는 비교적 본 연구의 결과와 일치함을 보인다. 용액상태의 저농도의 불소가 법랑질의 탈피를 억제한다는 많은 연구 중 최초의 것은 Manly와 Harrington(1959)에 의해서 였으며 0.1ppm의 용액상태의 불소가 법랑질의 탈피를 상당량 감소시키는 것으로 알려졌다.

실험적으로 in vitro 실험에 시행한 fluoride treatment의 결과를 생체실험에서 동일하게 비교하는 것은 대단히 어렵다. 왜냐하면 구강 내에서는 상당량의 용해된 CaF₂가 구강내의 연하작용등에 의해서 소실될 수 있으며 이에함께 불소의 상당량도 같이 소실되기 때문이다. 그러나 지속적이고 반복적인 불소도포 방법을 통해서 CaF₂의 형성을 촉진 또는 유지시킬 수 있는 것으로 사료되며 이러한 CaF₂의 형성이 직접적으로 치아우식의 예방에 작용하는 것으로 판단된다.

앞으로의 연구는 불소용액의 산도 및 농도에 의해서 CaF₂의 형성이 영향을 받는 것에 착안하여 불소용액의 최적의 산도를 측정함과 동시에 사용빈도수가 허용하는 범위내에서 가능한 고농도의 불소용액을 사용하는 것이 바람직 하겠고 불소유리 치면결구전색제로부터도 CaF₂의 형성이 가능하므로 보다 장기적인 사용에 따른 내산성 효과의 분석이 있어야 하겠다.

V. 결 론

불소유리 치면결구 전색제로부터 유리된 불소 및 국소적인 불소도포 방법이 법랑질의 내산성효과에 미치는 영향을 total fluoride amount 와 firmly-bound fluoride의 관계에서 불소의 흡수량 및 acid biopsy에 의한 법랑질 탈피정도를 비교하여 다음과 같은 결론을 얻었다.

1. CaF₂의 형성은 APF, NaF, fluoride-releasing sealant 도포군에서 모두 관찰되었다.
2. 국소적인 불소도포 방법인 APF 및 NaF에 의해서 법랑질에 흡수되는 불소의 양이 두터하게 증가된 반면 fluoride-releasing sealant 도포군의 경우 흡수된 불소량의 증가를 관찰할 수 없었다.
3. APF, NaF도포군 및 불소유리 치면결구 전색제군에서 firmly-bound fluoride의 증가를 관찰할 수 없었다.
4. 법랑질의 내산성은 APF 및 NaF 도포군에서 두려하게 향상되었으나 fluoride-releasing sealant 도포군의 경우 특별한 영향을 미치지 않았다.
5. 법랑질에 존재하는 충분소의 절대량과 법랑질의 탈피정도 사이에는 유의한 상관관계를 보이지 않았으며 firmly-bound fluoride의 절대량과 법랑질의 탈피정도사이에도 상관관계는 발견되지 않았다. 이상의 결과로 보아 국소적인 불소도포
방법에 의해서만 법랑질의 내산성을 증가시킬 수 있으나 불소유리 치면염구 전색재의 경우에도 전자현미경상에서 CaF₂의 형성이 두드러하게 관찰되었으므로 장기적으로 법랑질 표면과 접촉되는 fluoride-releasing sealant의 경우에도 내산성의 향상을 기대할 수 있다고 생각된다.

참고 문헌

18. Eronat, C., Eronat, N., Alpoz, A.R. : Fluo-
36. Manly, R.S., Harrington, D.P. : Solution
42. Ogaard, B. : Effects of fluoride on caries development and progression in vivo. J. Dent.Res.69(Spec Iss) : 813-819, 1990
45. Ogaard, B., Rolla, G., Helgeland, K. : Uptake and retention of alkali soluble and alkali insoluble fluoride in sound enamel in vivo after mouthrinses with 0.05% or 0.2% NaF. Caries Research. 17 : 520-524, 1983a
65. Takagi, S., Chow, L.C., Yamada, E.M. et al.: Enhanced enamel F uptake by mono-
calcium phosphate monohydrate gels. J.
Dent.Res.66: 1523-1526, 1987
66. Tanaka, M., Ono, Y., Kadoma, Y., Imai, Y.:
Incorporation into human enamel of
fluoride slowly released from a sealant in
67. Tantbirojn, D., Retief, D.H., Russell, C.M.:
Enamel, cementum and dentin fluoride
uptake from a fluoride releasing resin co-
68. Trautz, O.R., Zapanta, R.R.: Experiments
with calcium carbonate phosphates and
the effects of topical application of sodium
fluoride. Arch. Oral Biol. 4(Suppl 1): 122-
133, 1961
69. Van Der Merwe, E.H.M., Bischoff, J.I., Fatti,
L.P., Retief, E.H., Barbakow, F. H.,
Friedman, M.: Relationships between
fluoride in enamel, DMFT index and fluo-
rosis in high- and low-fluoride areas in
south africa. Community Dent. Oral Epi-
demiol. 5: 61-64, 1977
70. Wefel, J.S., Jarless, J.D.: The effect of to-
pical fluoride agents on fluoride uptake
and surface morphology. J.Dent.Res.60:
1842-1848, 1982
71. Wei, S.H.Y., Schulz, E.M., Jr.: In vivo micro-
sampling of enamel fluoride concentra-
tions after topical treatments, Caries Res.
9: 50-58, 1975
72. 김기원, 이종갑, 손홍규: 수 중의 치과
제료에서 유리된 물소측정 및 인장 강도에
73. 김태영, 손동수: 상수도불소화가 유지방
방에 미치는 영향에 관한 연구. 대한소아치과학회지 17: 116-122, 1990
Fig. 6. Untreated Enamel Surface (x5,000)
Fig. 7. Untreated Enamel Surface (x20,000)
Fig. 8. CaF$_2$ Formation on Enamel Surface, APF 30 min application (x5,000)
Fig. 9. CaF$_2$ Formation on Enamel Surface, APF 30 min application (x20,000)
Fig. 10. CaF$_2$ Formation on Enamel Surface, NaF 30 min application (x5,000)
Fig. 11. CaF$_2$ Formation on Enamel Surface, NaF 30 min application (x20,000)
Fig. 12. CaF$_2$ Formation on Enamel Surface, Fluoroshield application for 30 days (x5,000)
Fig. 13. CaF$_2$ Formation on Enamel Surface, Fluoroshield application for 30 days (x20,000)
Fig. 14. CaF$_2$ Formation on Enamel Surface, FaF 24 hrs application (x20,000)
Fig. 15. CaF$_2$ Formation on Enamel Surface, APF 24 hrs application (x20,000)
사진부도 2

Fig. 12

Fig. 13

Fig. 14

Fig. 15