of the models and the pipelines used for the baryon acoustic oscillation (BAO) and full shape clustering analysis. Our study is relevant for the final eBOSS DR16 'consensus cosmology', as the systematic error budget is informed by testing the results of analyses against these high-resolution mocks. In addition, it is also useful for future large-volume surveys, since similar mock-making techniques and systematic corrections can be readily extended to model for instance the DESI galaxy sample. # [포 CD-02] Model-independent reconstruction of the equation of state of dark energy Seung-gyu Hwang¹, Benjamin L'Huillier¹ ¹Department of Astronomy, Yonsei University While Dark Energy is one of the explanations for the accelerating expansion of the Universe, its nature remains a mystery. The standard (flat) Λ CDM model is consistent with cosmological observations: type Ia Supernova, BAO, CMB, and so on. However, the analysis of observations assuming a model, model-dependent approach, is likely to bias the results towards the assumed model. In this poster, I will introduce model-independent approach with Gaussian process and the application of Gaussian process regression to reconstruct the equation of state of dark energy. ## 태양/태양계 #### [포 SS-01] 2019 Total Solar Eclipse Expedition of KASI Su-Chan Bong¹, Heesu Yang¹, Jae-Ok Lee¹, Jinhyun Kim¹, Young-Beom Jeon¹, Bi-Ho Jang¹, Jungjoon Seough¹, Young-Deuk Park¹ ¹Korea Astronomy and Space Science Institute, Daejeon, Korea Korea Astronomy and Space Science Institute (KASI) is developing a coronagraph to measure the coronal electron density, temperature, and speed utilizing spectral change of the K-corona around 400 nm. However, near UV light is more affected by atmospheric effect on the ground than visible light. For the total solar eclipse on July 2 2019, KASI organized an expedition team to test the possibility of the similar measurement scheme in the visible light. The observation site was in Las Flores, San Juan, Argentina. We built an imaging spectrograph using micro lenslet array and grism, named Coronal Integral Field Spectrograph (CorIFS). In addition, images of white light corona, wide field background, and all sky were taken with various camera settings. We present the preliminary results of the expedition. #### [포 SS-02] 30cm Wide-Field Solar Spectro-Imaging Telescope (Post SOFT) Heesu Yang, Seonghwan Choi, Eun-Kyung Lim, Jihun Kim, Jongyeob Park, Ji-Hye Baek, Kyung-Suk Cho, Yeon-Han Kim, Bi-Ho Jang, Ryun-Young Kwon, Rok-Soon Kim, Sujin Kim, Yeong-Deuk Park, Suchan Bong, Jungjoon Seough, Young-Sil Kwak Korea Astronomy and Space Science Institute 우주개발과 활용이 주요 화두가 된 현대에 보다 빠르고 정확한 우주환경 예보는 전략적으로 매우 중요하다. 이에 광대역태양영상분광망원경(Wide-Field Spectro-Imaging Telescope, Post SOlar Telescope: PSOFT)을 활용한 태양전면 영상분광감시체 계를 구성하고자 한다. 전세계 세 곳에 PSOFT를 배치하 여 우주환경에 중대한 영향을 주는 요소인 태양의 플레어 와 홍염 분출과 같은 현상과 표면의 다양한 활동들을 실시 간으로 관측 분석하고자 한다. PSOFT는 30cm 구경의 광 학계에 고속영상분광기를 결합하여 태양 전면의 분광영상 을 약 1초각의 영상해상도와 5분의 시간해상도로 획득한 다. 태양 전면을 슬릿으로 스캔하는 방식으로 H alpha와 Ca II 854.2nm선의 분광정보를 획득하는데 팁틸트 미러 를 이용하여 1차적인 시상보정과 함께 스캔모션을 함께 구현함으로써 1)광학계 구조를 단순화하고, 2) 빠른 스캔 이 가능하다. PSOFT로 얻은 태양전면 채층분광영상 데이 터는 정밀한 우주환경 예보에 필요한 플레어나 홍염분출 의 발생초기 정보를 제공할 뿐 아니라 태양 저층대기에서 발생하는 자기재연결, 파동 등에 대한 통계적 연구자료를 제공할 것으로 기대한다. # 항성/항성계/외계행성 ### [포 SA-01] Photoionization and Raman-scattered He II features in young planetary nebulae Mi-Kyung Kim¹, Hee-Won Lee¹, ¹Department of Physics and Astronomy, Sejong University, Seoul, 05006, Korea Raman-scattered He II features are known to be present in several young planetary nebulae (PNe) including NGC 7027, NGC 6302, IC 5117 and NGC 6790. These features provide a new spectroscopic window to probe both thick neutral regions and far UV regions near Lyman series. We carry out