[구 GC-28] Beyond halo mass: the role of vorticity-rich filaments in quenching galaxy mass assembly

Hyunmi Song¹ (송현미), Clotilde Laigle², Ho Seong Hwang³ (황호창), Julien Devriendt⁴, Yohan Dubois², Katarina Krajic⁵, Christophe Pichon²,⁶, Adrienne Slyz², Rory Smith⁷
¹Yonsei University (연세대학교), ²Institut d’Astrophysique de Paris, ³Korea Astronomy and Space Science Institute (한국천문연구원), ⁴University of Oxford, ⁵University of Edinburgh, ⁶Korea Institute for Advanced Study (고등과학원)

We examine how the mass assembly of central galaxies depends on their location in the cosmic web. The HORIZON-AGN simulation is analysed at z ~ 2 using the DISPERSE code to extract multi-scale cosmic filaments. We find that the dependency of galaxy properties on large-scale environment is mostly inherited from the (large-scale) environmental dependency of their host halo mass. When adopting a residual analysis that removes the host halo mass effect, we detect a direct and non-negligible influence of cosmic filaments. Proximity to filaments enhances the build-up of stellar mass, a result in agreement with previous studies. However, our multi-scale analysis also reveals that, at the edge of filaments, star formation is suppressed. In addition, we find clues for compaction of the stellar distribution at close proximity to filaments. We suggest that gas transfer from the outside to the inside of the haloes (where galaxies reside) becomes less efficient closer to filaments, due to high angular momentum supply at the vorticity-rich edge of filaments. This quenching mechanism may partly explain the larger fraction of passive galaxies in filaments, as inferred from observations at lower redshifts.

[구 AT-02] Gamma-Ray Burst Observation by SNIPE mission

Jae-Jin Lee¹, Hong Joo Kim², Uk-Won Nam³, Won-Kee Park⁴, Jongdae Shon⁵, Soon-Wook Kim⁶, Jeong-Sook Kim⁷, Yong-Woo Kang⁸, Z. Lucas Uhm⁹, Sinchul Kang⁹, Sang Hyeok Im¹⁰, Sunghwan Kim¹⁰
¹Korea Astronomy and Space Science Institute, ²Kyungpook National University, ³Cheongju University

For the space weather research, KASI (Korea Astronomy and Space Science Institute) is developing the SNIPE (Small-scale magNetospheric and Ionospheric Plasma Experiment) mission, which consists of four 6U CubeSats of ~10 kg. Besides of space weather research, the SNIPE mission has another astrophysical objective, detecting Gamma-Ray Bursts (GRB). By cross-correlating the light curves of the detected GRBs, the fleet shall be able to determine the time difference of the arriving signal between the satellites and thus determine the position of bright short bursts with an accuracy ~100”. To demonstrate the technology of the GRB observation, CSI gamma-ray detectors combined with GPS and IRIDIUM communication modules are placed on each SNIPE CubeSat. The time of each spacecraft is synchronized and when the GRB is detected, the light curve will be transferred to the
Mission Operation Center (MOC) by IRIDIUM communication module. By measuring time difference of each GRB signals, the technology for localization of GRB will be proved. If the results show some possibilities, we can challenge the new astrophysical mission for investigating the origin of GRB.

[구 AT-03] System Requirement Review of Lunar Surface magnetometer on the CLPS program
Ho Jin1, Khan-Hyuuk Kim1, Seongwhan Lee2, Hyojeong Lee3, Daerac Seon4, Byungwook Jung1, Yunho Jang1, Hyeonhu Park1
1School of Space Research,Kyung Hee University, 2NARA Space Inc, 3Intorule Inc, 4Sensorpia
The Korea Astronomy and Space Science Institute is participating as a South Korean partner in the Commercial Lunar Payload Services (CLPS)of NASA. In response, the Korea Astronomy and Space Science Institute is currently conducting basic research for the development of four candidate instrument payloads. The magnetic field instrument is one of them and it’s scientific mission objective is the moon’s surface magnetic field investigation. Therefore, the development requirement of the lunar surface magnetic field instrument were derived and the initial conceptual design was started. The magnetic field instrument has a 1.2 meter boom which has two three-axis fluxgate magnetometer sensors and one gyro sensor to get a attitude information of the boom. The concept of measuring the lunar surface magnetic field will carry out using multiple sensors by placing semiconductor type magnetic field sensors inside the electric box including boom mounted fluxgate sensors. In order to overcome the very short development period, we will use the KPLO (Korean Lunar Pathfinder Orbiter) magnetometer design and parts to improve reliabilities for this instrument. In this presentation, we introduce the instrument requirements and conceptual design for the Lunar surface magnetic field instruments.

[구 AT-04] Introduction of the UVOMPIS (UV-Optical Multiband Polarizing Imager System) onboard the CAS500-3
Dahee Lee et al.
Korea Astronomy and Space science Institute

500kg급 차세대중형위성은 공공분야 위성 수에 효과적으로 대응하고, 국내 위성산업 저변 확대 및 산업체 육성을 위한 사업으로 개발되고 있다. 국내 산업체에서 개발되는 표준 위성 플랫폼이 적용될 예정인 차세대중형위성3호는 우주과학/기술검증 등 위성을, 특히 한국형발사체에 의해 2023년 발사된다는 점이 특별하다.

본 발표에서는 차세대 중형위성 3호에 탑재된 우주망원경 UVOMPIS (UV-Optical Multiband Polarizing Imager System)에 대한 개념 설계 결과 및 과학 임무에 대한 소개를 통해 국내 학계와 산업체의 협력과 관심을 유도하고자 한다.

[구 AT-05] Space Telescope Plan of KASI for the Next Decades (2030년대 우주망원경 운영에 대비한 한국천문연구원의 우주망원경 기획연구 활력 소개)
Bongkong Moon(문봉근), Dae-Hee Lee(이대희)1,2, Young-Jun Choi(최영준)1, Wonyong Han(한원용)1, Ukwon Nam(남우종)1, Youngsik Park(박영식)1, Won-Kee Park(박현기)1, Jakyung Nah(나자경)1, Woojin Kim(김우진)1, Jeong-Yeol Han(한정열)1, Kyoungho Kim(김경호)1
1Space Science Division, Astronomy and Space Science Institute(한국천문연구원 우주과학부), 2Technology Center for Astronomy and Space Science, Korea Astronomy and Space Science Institute(한국천문연구원 천문우주기술센터), 3Policy Division, Korea Astronomy and Space Science Institute(한국천문연구원 정책부)

한국천문연구원은 천문우주분야의 과학기술 탑재체 개발을 주도적으로 수행해오고 있다. 과학기술위성1호 주탑재 천문외원영상분광기 FIMS 개발, 과학기술위성3호 주탑재체 다목적외선영상시스템 MIRIS 개발, 차세대소형위성1호 주탑재체 근적외원영상분광기 NISS 개발을 수행하였고, 현재는 NASA와 국제협력으로 SPHEREx 우주망원경을 개발하고 있다.

이러한 개발 과정을 거치면서 주경 20cm 이하의 소형 탑재체 과학기술 개발의 수준에 다가며 연구 한반도에서 더 큰 우주망원경의 수요가 제기되었고, 현재의 국가우주개발 증강기획에도 2030년대 한국형우주망원경을 포함하게 되었다. 이러한 일정에 맞추어 한국천문연구원은 2030년대 한국형 우주망원경 독자 운영을 대비하기 위해서 2020년 1월부터 주요 사업으로 한국형 우주망원경 개발을 위한 기획연구를 시작하였다. 이 기획연구는 2년 동안 수행할 예정이며, 이 기획연구를 통해서 학계의 과학기술 요구사항을 사전에 충분히 조사하고, 국내외 산학연 전문가의 의견들을 종합 수렴하여 선도적인 과학 연구를 수행할 수 있는 우주망원경의 기본 채원을 확정할 예정이다. 이 발표에서 우리는 이러한 기획연구의 세부 활동을 공유하고 보고하고자 한다.

[구 AT-06] Ebert-Fastie spectrograph using the Transformable Reflective Telescope kit
Hojae Ahn1, Gyuchan Mo2, Hyeonwoo Jung3, Junwhan Choi2, Dou Yoon Kwon2, Minseon Lee3, Dohoon Kim2, Sumin Lee2, Woojin Park1, Ho Lee2, Kiehyun Park2, Hyunjong Kim2, Soojong Pak1,3