open a new way of exploring the universe, namely, multi-messenger astronomy (MMA). One of the keys to the success of MMA is a rapid identification of EM counterpart.

We will introduce GW follow-up observation project in Korea for hunting GW EM counterpart rapidly and its strategy for prioritization of GW source host galaxy candidates. Our method relies on recent simulation results regarding plausible properties of GW source host galaxies and the low latency localization map from LIGO/Virgo. We will show a test result for both binary neutron star merger events using previous event and describe observing strategy with our facilities for GW events during the ongoing LIGO/Virgo O3 run. Finally, we report the results of optical/NIR follow-up observation of GW190425, the first neutron

\[\text{[구 GC-23] Gamma-Ray and Neutrino Emissions from Starburst Galaxies}\]

Ji-Hoon Ha\(^1\), Dongsu Ryu\(^1\) and Hyesung Kang\(^2\)
\(^1\)Department of Physics, School of Natural Sciences UNIST, Ulsan 44919, Korea
\(^2\)Department of Earth Sciences, Pusan National University, Busan 46241, Korea

Cosmic-ray protons (CRp) are efficiently produced at starburst galaxies (SBGs), where the star formation rate (SFR) rate is high. In this talk, we present estimates of gamma-ray and neutrino emissions from nearby SBGs, M82, NGC253, and Arp220. Inside the starburst nucleus (SBN), CRp are accelerated at supernova remnant (SNR) shocks as well as at stellar wind (SW) termination shocks, and their transport is governed by the advection due to starburst-driven wind and diffusion mediated by turbulence. We here model the momentum distributions of SNR and SW-produced CRp with single or a double power-law forms. We also employ two different diffusion models, where CRp are resonantly scattered off large-scale turbulence in SBN or self-excited waves driven by CR streaming instability. We then calculate gamma-ray/neutrino fluxes. The observed gamma-ray fluxes by Fermi-LAT, Veritas, and H.E.S.S are well reproduced with double power-law distribution for SNR-produced CRp and the CRp diffusion by self-excited turbulence. The estimated neutrino fluxes are \(<10^{-3}\) of the atmospheric neutrino flux in the energy range of Eneutrino \(\langle 100\ \text{GeV} \) and \(\langle 10^{-1}\) of the IceCube point source sensitivity in the energy range of Eneutrino \(\rangle 60\ \text{TeV}.

Jeongbhin Seo\(^1\), Hyesung Kang\(^2\), Dongsu Ryu\(^1\)
\(^1\)Pusan National University, \(^2\)Ulsan Institute of Science and Technology

We study the structures and dynamics of flows generated by ultra-relativistic jets on kpc scales through three-dimensional relativistic hydrodynamics (RHD) simulations. We employ a newly developed RHD code, equipped with the WENO-Z reconstruction, the SSPRK time discretization, and an equation of state that closely approximates the single-component perfect gas in relativistic regime. Exploring a set of models with various parameters, we confirm that the well-known Fanaroff-Riley dichotomy is primarily determined by the jet power, whereas the morphology of simulated jets also depends on the secondary parameters such as the momentum injection rate and the ratio of the jet to background pressure. Utilizing high resolution capabilities of the newly developed code, we examine in detail the dynamical properties of complex flows in different parts of jet-produced structures, and present the statistics of nonlinear dynamics such as shock, shear, and turbulence.

\[\text{[구 GC-25] On the origin of the thick discs of spiral galaxies from high-resolution cosmological simulations}\]

Sukyoung K. Yi\(^1\), Min-Jung Park\(^1\), Sebastien Peirani\(^2\), Christophe Fichon\(^3\), Yohan Dubois\(^3\), Hoseung Choi\(^4\), Julien Devriendt\(^4\), Taysun Kim\(^3\), Sugata Kaviraj\(^5\), Katarina Kraljic\(^6\), Marta Volonteri\(^7\)
\(^1\)Yonsei University,
\(^2\)Observatoire de la Côte d’Azur,
\(^3\)Institut d’Astrophysique de Paris,
\(^4\)University of Oxford,
\(^5\)University of Hertfordshire
\(^6\)University of Edinburgh

Ever since thick disk was proposed to explain the vertical distribution of the Milky Way disk stars, its origin has been a recurrent question. We aim to answer this question by inspecting 19 disk galaxies with stellar mass greater than \(10^9\) solar mass in recent cosmological high-resolution (\(>34\) pc) zoom-in simulations: Galactica and New Horizon. The thin and thick disks are reproduced by the simulations with scale heights and luminosity ratios that are in reasonable agreement with observations. When we spatially classify the disk stars into thin and thick disks by their heights from the galactic plane, the “thick” disk stars are older, less metal-rich, kinematically hotter, and higher in accreted star fraction than the “thin” disk counterparts. However, we found that the the thick disk stars were spatially and kinematically