내부표준법을 이용한 감마선 분광분석시스템 검출효율 교정방법 연구

이정희 이경범 · 박태순 · 이종만 · 이상한 · 오필제 · 이민기 · 김은주*

한국표준과학연구원 전북대학교*

E-mail: jhlee77m@gmail.com

중심어 (keyword): 내부표준법, 감마선분광분석, 효율교정, 방사능측정, 환경시료

서 론

HPGe 검출기의 에너지와 효율교정에는 일반적으로 외부표준방법이 사용된다. 이 방법은 분석하려고 하는 시료와 동일한 밀도, 기하학적 구조 및 화학적 구성을 갖는 인증표준물질을 사용한다. 검출기 효율결정에 인 증표준물질을 사용하는 외부표준방법과 달리, 측정시 료만으로 효율교정을 수행할 수 있는 방법이 내부표 준방법이다. 내부표준방법의 편리성과 광범위한 현장 적용성에도 불구하고 아직 그 방법의 유효성에 대한 연구가 이루어지고 있지 않다. 본 연구는 내부표준방 법에 의한 검출효율 교정절차와 결과를 제시하였다. 또한 내부표준방법으로 얻은 효율값과 외부표준방법 으로 구한 효율값을 비교분석하여 내부표준방법의 유 효성을 확보하였다. 외부표준법으로 계산한 검출효율 과 내부표준법으로 계산한 검출효율은 2% 범위 내에 서 일치하였다. 이 사실은 내부표준방법이 외부표준방 법의 적용이 어려운 상황에서 유효성 있게 사용할 수 있다는 것을 보여주고 있다.

재료 및 방법

내부표준법에 의해 검출기의 검출효율을 교정하기 위해서는 다음의 두 가지 조건이 충족되어야 한다. 첫번째는 측정시료의 ²³⁸U 혹은 ²³²Th 붕괴계열에 대해 방사평형상태에 있어야 한다. 즉 측정시료의 같은 계열의 핵종의 방사능은 동일해야 한다. 두번째는 검출기의 검출효율은 300 keV 이상에서 에너지에 대한효율의 log-log 척도의 일차식으로 근사 가능해야 한

다. 즉 0.3 ~ 2 MeV 영역에서 에너지에 대한 효율의 관계식은 아래 식으로 기술될 수 있다. [1]

$$\ln \epsilon = \ln a + m \ln \frac{E}{E_0} \tag{1}$$

여기서 ϵ 은 검출효율이고 a, m 는 실험적인 매개 변수, E 는 에너지(keV)고 E_0 는 1 keV 이다.

이 두가지 조건이 충족된 후 내부표준방법을 이용 한 효율교정을 위해서 먼저 감마선 분광분석시스템으 로 측정시료의 ²³⁸U, ²³²Th 붕괴계열의 딸핵종 감마선 에너지별 계수율를 구한다. 방사평형상태를 이룬 같은 계열의 핵종의 방사능은 동일하므로, 위에서 구한 계 수율과 감마선 방출율을 이용하여 감마선 에너지별 상대적효율을 구한다. 상대적효율은 KCI 시료를 측정 하여 얻은 ⁴⁰K의 1460.8 keV 에서의 계수율과 방사 능농도(1.64*10⁴ Bq/kg)로 구한 검출효율과 동일한 에너지에서 상대적효율과의 비를(factor)를 구하여 다 른 감마선에너지에 그 비율(factor)를 곱하여 상대적 효율을 절대효율로 변환한다. 측정시료(IAEA-385)를 90 cm³ 알루미늄 용기에 담어 밀봉하여 30 일 정도가 경과한 후 용기를 랩으로 감싸 저준위 HPGe 검출기 [2]의 표면에 측정시료를 놓고 측정하였다. 환경시료 특성상 방사능농도가 낮으므로 긴 측정시간이 요구되 며 측정시간은 585,048 초이다. 순도가 99.5% KCl 을 오븐에 100도에서 24 시간을 가열하여 습기를 제거한 후 파우더 형태로 만들어 환경시료와 동일한 용기에 담아 밀봉한 후 113,284 초 측정하였다. 또한 시료가 없는 상태에서 백그라운드(BKG) 측정이 반드시 필요 하며, 511,814초 측정하였다.

2010년도 춘계 학술발표회 논문집 대한방사선방어학회

Nuclide 228Ac	Energy (keV) 463.2	Emission Ratio 0.044	Soil sample Counts Uncertity		BKG Counts Uncertity		ln(Energy)	ln(Rel. Effi.)
			3829	152	0	0	6.138	-1.906
²¹² Bi	727.4	0.067	5615	125	175	56	6.589	-1.979
²²⁸ Ac	795.0	0.043	2949	115	0	0	6.678	-2.144
²²⁸ Ac	911.3	0.258	18910	173	511	60	6.815	-2.109
²¹⁴ Bi	609.4	0.455	30255	213	7245	111	6.412	-2.504
²¹⁴ Bi	1120.3	0.149	6537	132	1498	64	7.021	-2.894
²¹⁴ Bi	1238.3	0.058	2436	134	624	55	7.122	-2.980
²¹⁴ Bi	1764.6	0.153	6590	100	1573	57	7.476	-2.927

표1. 측정시료의 ²³⁸U, ²³²Th 계열 딸핵종의 감마선 에너지, 방출율, 계수, 백그라운드 상대적효율.

결과 및 고찰

표1.는 측정시료에 존재하는 ²³⁸U, ²³²Th 계열 딸핵 종 의 감마선 에너지, 방출율 그리고 측정한 계수를 나타내었다. 에너지에 대한 상대적효율의 log-log 척도 1차 피팅을 하여, ²³²Th 계열의 기울기는 -0.3342, y 절편은 0.1702 그리고 ²³⁸U 계열의 기울기는 -0.4492, y 절편은 0.3783 을 구했다.

위에서 구한 log-log 척도의 1차식으로 1460.82 keV에서 상대적효율을 구할수 있다. 상대적효율은 비(factor)를 이용하여 효율로 변환된다. 비는 동일한 에너지에서 검출효율을 상대적효율로 나눈값이다. 비(factor)를 구하기 위해 먼저, KCl 시료에서 측정된 ⁴⁰K의 1460.8 keV에서 검출효율을 구해야 한다. 검출효율은 0.0323 이다. ²³²Th과 ²³⁸U log-log 척도식으로 1460.8 keV에서 ²³²Th 계열의 상대적효율 0.104 Bq/Kg 과 ²³⁸U 계열의 상대적효율 0.055 Bq/Kg 를 얻었다. 각각의 상대적효율을 ⁴⁰K의 1460.8 keV에서 검출효율로 나눈 비(factor)는 0.311 과 0.584 이다. 이 비를

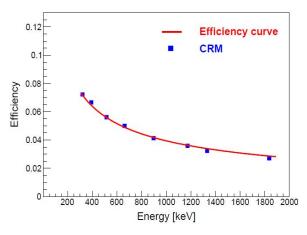


그림1. 내부표준법을 사용하여 구한 효율곡선과 인증표준물질 (CRM)으로 계산한 효율

상대효율에 곱하여 구한 효율값을 식(1)으로 피팅하여 매개 변수 a = 1.484, m = -0.525 을 얻었다. 매개 변수 a, m으로 에너지에 대한 효율곡선을 구했으며, 그림1. 은 내부표준법으로 구한 효율곡선과 인증표준물질을 사용하여 구한 효율을 나타냈다. 내부표준법으로 얻은 효율은 외부표준법의 구한 효율과 2% 범위내에서 일치함을 보였다.

결 론

내부표준법으로 HPGe 검출기의 효율곡선을 구했다. 일반적인 외부표준법과 비교하여 검출효율면에서 큰 차이를 보이지 않았으나, 불확도 면에서 다소 높게나타남을 알수 있었다. 방사평형 조건으로 ²³²Th과 ²³⁸U 계열 log-log 척도의 1차식의 기울기가 다소 차이를 보이고 있으나, 이에 대해서는 지속적인 연구가 있어야 할것이다. 내부표준방법은 효율교정 절차가 단순하며 외부표준법과 효율 차이 측면에서 2% 내에서 일치했다. KCI 시료와 환경시료을 사용하여 검출기 효율교정 방법은 편리성과 현장 적용성에 의해 환경 방사능 측정시 표준물질을 사용하기 곤란한 경우 감마선 분광분석시스템의 효율교정 방법으로 사용될 것이다.

참 고 문 헌

- [1] Gordana Pantelic, Gamma spectrometry calibrations with natural radioactive materials, Nuclear Instruments and Methods in Physics Research A 369 (1996).
- [2] K.B. Lee, Development of a low-level background gamma-ray spectrometer by KRISS, Applied Radiation and Isotopes Volume 66, Issues 6-7, (2008)