이동식 ICG를 이용한 과도접지임피던스 측정 시스템 구축

(Installation of Measuring System for the Transient Ground Impedances using Portable Impulse Current Generator)

이태형·조성철·염주홍
(Tae-Hyung Lee·Sung-Chul Cho·Ju-hong Eom)

Abstract

This paper presents the installation of measuring system for the transient behaviors of grounding system impedances using portable impulse current generator. The measuring system is composed with controller, power supply, impulse current generator and data aquisition system. In the evaluation of the impulse response in a ground electrode, the step response is calculated based on the ratio of the voltage and current observed.

1. 서론

접지극에 흐르는 전류가 상용 주파수 영역의 전류인 경우, 접지전극 전체가 접지극으로서의 기능을 한다. 그러나 뇌격전류인 경우에는 높은 주파수 성분으로 인하여 접지전극 화재에 일부만이 접지전극으로 작용하는 경우가 있다. 이것은 뇌격전류 특유의 빠른 상승시간 영역에서 나타나는 특성으로 높은 주파수 영역에서의 응답특성에 기인한다. 즉, 접지전극의 일부만이 접지전극으로서의 기능을 한다는 것은 다른 관점에서 보면, 접지임피던스가 급격히 증가하기 때문이다. 정상상태에서의 접지지향으로는 그 특성을 해석하기가 기술적으로 불가능하다. 따라서 접지시스템의 보호등작을 효과적으로 수행하기 위해서는 접지극의 배치와 유효길이를 고려한 설계와 시공이 필요하게 된다. 또한 접지전극의 종류에 따라 과도응답특성이 각각 달라지며, 상용 주파수 영역에서 동일한 접지지향을 가지는 접지전극일지라도 과도응답특성은 전혀 다른 양상을 나타내기도 한다.

현재 배전계통의 접지시스템은 대부분 가공지선과 같이 완금 및 지압선로의 중심선이 다중접지형제로 접촉되어 있다. 그러므로 한 지점에서 입사한 뇌격전압은 효과적으로 보호등작이 이루어지지 않을 경우 급격히 다른 지점으로 전파되어 가게 되므로 배전계통의 접지시스템 전체로 보았을 때에는 직접적 및 유효스의 위험 사고변도가 매우 높은 편이다. 현재까지 배전계통의 접지시스템은 접지지향으로 설계되었으나, 접지지향을 기준으로 설계하고 있는 설정이므로 뇌격전류의 전압 시에는 과도접지임피던스의 영향으로 설계값보다 높은 접지전위상승이 발생하는 경우가 많다. 따라서 접지시스템의 성능을 접지임피던스 차원으로 확장하여 평가하는 방법이 필요하며, 이를 위해 이동식 ICG(Impulse Current Generator)와 DAS(Data Acquisition System)으로 구성된 과도접지임피던스 측정 시스템을 구축하였다.

2. 본론

2.1 전류임펄스발생장치 기본회로

그림 1. 임펄스전류발생기 기본회로
Fig. 1. Basic circuit of the impulse generator

임펄스전류 발생기의 기본회로는 R, L, C 직렬회로이며, 그림 1과 같다.

임펄스 전류의 형성은 그림 1의 회로에서 볼 수 있듯이 R, L, C의 간의 조절로 되며 다음 식을 따른다.

\[L \frac{di}{dt} + Ri + \frac{1}{C} \int idt = 0 \] \hspace{1cm} (1)

2.2 접지임펄스임피던스 분석기법

접지시스템의 임펄스접지임피던스는 낙뢰에 대한 전기설비의 보호에 있어서 중요한 요소이며, 뇌격전류에 주안점을 두 접지시스템에서의 임펄스접지임피던스 특...
성은 대지저항의 특형과 차수 및 균각계의
의 과정에 따라 매우 다양하다. 과도접지임피드스는 설
합용 접지전극의 전위를 인간전류로 나누어 산출한다.
임피드전류 인가에 대한 과도접지임피드스의 기하도를
그림 2에 나타내었다. 임피드스임피드스의 본격은 임피드스
전압과 임피드스전류의 비에 의해서 결정되며, 각각의 파
형이 피크를 갖는 임피드스 형이므로 보니 임피드스 분
식이 쉽지 않다. 따라서 현재까지 기술현황이나 논문에
서 언급하고 있는 방법들 중에서 식(2)의 전압피크값과
전류피크값의 비 또는 식(3)의 전압피크값의 전압, 전류의
비와 식(4)의 전류피크값의 전압, 전류값의
비를 각각 나타내도록 하였다.

\[
Z_1 = \frac{v(t_1)}{i(t_2)} \quad (2) \quad Z_2 = \frac{v(t_1)}{i(t_1)} \quad (3) \\
Z_3 = \frac{v(t_2)}{i(t_2)} \quad (4)
\]

그림 2. 과도접지임피드스
Fig. 2. Transient ground impedance

2.3. 이동식 임피드스 접지임피드스 측정장치 구축

![그림 3. 임피드스전류발생장치의 모로도](image)

Fig. 3. Circuit of the impulse current generator

 접지시스템으로 입사하는 뉴파전압 또는 뉴파전류를
모의하기 위하여 그림 4(a)의 전류임피드스 발생기(20
kV/ 10 kA)를 제작하였으며, 그 회로는 그림 3에 나
타내었다. 그리고 방전기는 전체 뉴파전압, 접지시스템
의 접지전위상수, 방전전류 등을 정확히 측정할 수 있
는 그림 3(b)의 측정시스템을 개발하였다. 뉴파전
전류 발생기는 배전용 피뢰기 및 피뢰기구의 임피드스전류에
적합하도록 설계하였다. 장치는 크게 3부분으로 나뉘는
데 체어박스, 중심전원부 그리고 임피드스 전압/전류발생
부로 이루어진다. 임피드스발생장치는 8/20 μs, 4/10 μs
전류임피드스파형과 1.2/50 μs 전압임피드스파형을
 만들 수 있게 설계되었다. 시동방식은 적절 간격 단락방식이고,
그 크기를 최소화 시키는데 역점을 두고 추진하여 접지
현장시험에 최대한 활용이 가능하도록 하였다.

![그림 4. 이동식 과도접지임피드스 측정 시스템](image)

Fig. 4. Measuring system for the transient ground impedances using portable impulse Current Generator

뇌뇌자인 경우 품은 시간에 그 동작이 이루어지므로
정확한 측정과 분석이 필요하다. 이를 위하여 PC상에서
측정파가 가능하도록 시스템을 구축하였으며, 절지전
위상성의 정확한 측정을 위해 differential mode를 지원
하는 전압프로브를 사용함에 아울러 비결측형 CT인 로
고스키형 전자측정기를 사용하여 정확도를 높였다.
전용 프로그램의 경우 고가의 특장 프로그램은 개발
후 현장에서 널리 사용하는 것이 경제적으로 어려우므
로, 저가의 방식 프로그램 상에서 본 연구를 통해 개발
된 프로그램 붐을 이용하였다. 또한 현장의 사정에 따
라 분석을 용이하게 수행・보완할 수 있도록 사용자
편의성을 고려한 GUI(graphic user interface)를 채택하
였다.

그림 5. 측정에날로운 CT 내부에 조정 되는 CT의 대비
Fig. 5. Control panel and displaying the
measuring values

측정용 전류와 절지전위상성은 A/D 변환기를 통해
PC 상에서 연산되며, 측정된 데이터는 PC 내부의 HDD
에 자동으로 저장되도록 설계하였다. 저장된 데이터는
엑셀 등 데이터 시트 프로그램으로 각각의 수치데이터
를 확인할 수 있게 함과 동시에, 그림 5와 같이 절지시
스템에 호른 에플로션과 이에 따른 전압과류 그리고 전
압과함과 전류와함의 비율의 전류프레스턴스를 그래프로
나타내도록 하였다. 또한 과도접지임피던스 Zn, zn, Zn를
각각 나타내도록 하였다.

가변주파수 구형과 전류를 사용하게 되므로 각각의
주파수에서 필터를 적용하여야 한다. 하드웨어 필터는
각각의 주파수에서 차단주파수 설정을 매번 리셋이하
주어 하므로 Labview상에서 A/D 변환된 데이터에
대해 Digital filter를 적용하여 각 주파수에서 차단주파
수가 자동으로 설정되도록 프로그램 하였다. 이를
통하여 매 주파수 영역에서 접지임피던스가 계산되며,
이때 영향을 주는 고조파의 간섭을 제거할 수 있도록
하였다.

3. 결론

절지시스템의 성능을 평가하는 지표인 접지저항에서
한발 나아가 과도접지임피던스 차원의 성능을 평가하기
위한 전도접지임피던스 측정 시스템을 구축하였다. 이
측정시스템을 이용하여 뇌형태포 오류검정 점검, 오류기
법과 SPD에 사용되는 접지시스템, 통신품 기기 접지시스
템 등 실제 접지시스템의 과도특성을 측정하는데 활용
할 수 있을 것으로 기대된다. 또한 노이즈 제거 알고리
즘을 포함하여 설계되었으므로 사용 중인 전력시스템의
접지에도 적극 활용할 수 있다.

본 연구는 산업자원부 자원에 의하여 기초전력연구
원(과제번호 : R-2006-7-143) 주관으로 수행된 과제
임.

참고 문헌

(1) 이복희, 이승철. 전문진단설비의 뇌(電)보호. 인하대학교
(2) Verma R, Mukhopad A. Impulse impedance of ground wire,
(3) Melippoulos AP, Moharam MG. Transient analysis
of grounding systems. IEEE Trans Power Apparatus Syst
1983;102:389-399
(4) Grzes L, Dawalibi F. An electromagnetic model for
transients in grounding systems, IEEE Trans Power Delivery
1990;5:1773-1781