운영전에 의해 발생된 전장과 자장 파형의 파라미터 분석

(Parametric analysis of the electric and magnetic field waveforms produced by intracloud lightning discharges)

이복희•이우철•조성철
(Bok-Hee Lee, Woo-Chul Lee, Bong Lee, Sung-Chul Cho)
(한국기 전자기 선진화기술센터, 기초전학연구원)

Abstract

This paper deals with the parametric analysis of electric and magnetic fields generated by lightning discharges. The measuring system consisted of the plate-type electric field and loop-type magnetic field sensor, the voltage follower, the active integrator and LabVIEW software. The parameters of the electric and magnetic field waveforms produced by intracloud lightning strokes were presented.

1. 서 론

최근 정보화기의 보급에 따른 정보통신설비의 피해가 증가하고 있는 추세이다. 기존의 변위기 보호의 목적으로 일반시가 교방 및 화재예방이 주를 이루었으나 최근에는 보호대상으로 초고밀도 접합회로로 이루어진 통신기 및 전자기기로 확대되고 있다. 컴퓨터 및 초소형 기기는 건축물의 피뢰침에 손상이 쉽게 발생하거나 건축물 주변에 남편가 발생할 경우 유도되는 유도전압과 전차장에 의해 정보화 시스템의 영향, 손상 및 파괴로까지 이어져 엽창난 사고를 초래할 수 있으며, 박대한 경제적 손실을 가져올 수 있으므로 내화성능이 향상되고 내재 대책기술이 시급한 실정이다.

본 연구에서는 위성전시에 발생하는 전장 및 자장 파형을 관찰할 목적으로 평판형 전장 센서와 무프형 자장 센서를 포함한 측정시스템을 설계·제작하고, A/D컨버터를 통한 디지털신호를 컴퓨터 프로그램으로 전장과 자장 파형을 측정하고 전장과 자장 파형의 파라미터를 분석함으로써 보호 대책기술에 기초적 자료를 제공하고자 하였다.

2. 실험

2.1 측정 장비

그림 1에 평판형 전장 센서 및 무프형 자장 센서의 사진을 보여주고 있다. 평판형 전장 센서 로우파란 위성에 고이는 비와 눈, 바람 등의 영향에 의해 측정에 오차가 생길 수 있으므로 센서를 보호하도록 설치해 놓았다.

2.2 데이터취득시스템

센서로부터 측정한 후 신호 처리한 신호를 취득하는 것으로 LabVIEW 프로그램을 사용하였다. 12 bit 분해능과 10 [MS/s]의 샘플링 레이트를 가지 A/D 변환기를 사용하여 실험시간 측정 및 저장하도록 하였다. 또한 데이터 기록시간을 10 [ms]로 하여 뇌방전후 속도에 의해 발생하는 전장 및 자장의 한 이벤트 안에 측정할
수 있도록 하였다.
본 연구에서는 평면형 전장 센서, 투포형 자장 센서, 신호처리회로, 태이타 취득 장치 등으로 구성된 전장과 자장 측정시스템을 구축하였다. 계측장비로서 전장 측정시스템의 교정시험을 한 결과 30[Hz] ~ 2[MHz]의 주파수 대역과 2.0k[V/m]의 응답감도이다. 또한 자장 측정시스템의 경우 300[Hz] ~ 1[MHz]의 주파수 대역과 2.7[nt/m]의 응답감도이다. 이러한 측정시스템을 이용하여 운반전에 의해 발생된 전장과 자장 파형을 측정하고 전자장 측정자의 파라미터에 대해 통계적 분석을 실시하였다.

3. 결과 및 고찰
3.1 운반전에 의해 발생된 전장과 자장 파형
운반전에 의해 발생된 전장 강도의 주파수 성분을 고속 푸리에 변환(Fast Fourier Transformation : FFT)기법을 이용한 파형의 주파수 성분의 분석을 수행하였으며, 운반전에 의해 발생된 자장 파형과 이의 주파수 스펙트럼을 그림 2에 나타내었다.

그림 2. 정극성 운반전에 의해 발생된 자장의 대표적인 파형 및 주파수 분석
Fig. 2. Typical magnetic field waveform produced by positive cloud lightning discharges and its FFT result
운반전에 의해 발생된 전장과 자장 파형의 주파수 성분의 경우 수[kHz] ~ 수백[kHz]의 주파수 성분을 나타내는 것을 볼 수 있었으며, 고주파 발생원은 녹색 내의 뚜렷한 전장 변화에 의해 수백[kHz]의 고주파 성분이 발생하였다.

3.2 운반전에 의해 발생된 전장과 자장 파형의 파라미터 정의
운반전에 의해 발생된 전장 및 자장 파형의 대부분이 다중 펄스의 형태로 나타났으며, 다중성이 관계 파형에 비해 높은 것을 알 수 있었다.

그림 3. 운반전에 의해 발생된 전자장 파형의 파라미터
Fig. 3. Parameters of the electric and magnetic field waveform produced by lightning cloud discharges
그림 3에 운반전에 의해 발생되는 전장 및 자장 파형의 파라미터를 정의하였다. 운반전에 의해 발생하는 전장 및 자장 파형은 이벤트 진행 동안의 지속시간, 한 이벤트당 총 펄스 수, 최대파크치의 50[ppm]이상인 펄스 수, 최대파크치의 30[ppm]이상인 펄스 수, 상승시간, 영점교차시간, 펄스 폭, 반전될 깊이 등의 파라미터를 분석함으로써 운반전에 의해 발생된 전장과 자장 파형의 특성에 대해서 알아볼 수 있었다.

3.3 운반전에 의해 발생된 전장 및 자장 파형의 파라미터
운반전에서는 귀환적이거나 급격하게 변동하는 파형이 발생하지 않고 양극성 펄스가 발생하게 된다. 이와 같이 운반전은 양극성의 펄스가 파형을 가지므로 운반전의 특성은 크게 영점교차시간과 펄스폭에 대한 파라미터로서 나타낼 수 있다. 이는 연구에서 분석 대상으로 정한 운반전의 이벤트 수는 정극성의 경우 7개의 이벤트, 부극성의 경우 23개의 이벤트를 대상으로 하였다. 펄스 수로는 정극성의 경우 20개의 펄스, 부극성의 경우 74개의 펄스를 대상으로 분석하였다. 부극성 전자장 파형의 상승시간, 반전될 깊이, 펄스폭, 영점교차시간 등의 파라미터를 그림 4 ~ 그림 11에 나타내었다. 부극성 운반전의 경우 지속시간이 0.5 ~ 25 [ms]의 분포를 가졌으며, 평균 1.33[ms]의 지속시간을 가진 운반전가 발생하였다. 이 지속시간동안 총 6.83개의 펄스가 발생하였으며, 최고 파크치의 50[ppm]이상인 펄스 수는 평균 19.9개, 33[ppm]이상인 것은 322개의 펄스가 발생하였다.
그림 4. 운방전에 의해 발생된 전쟁의 상승시간 분포
Fig. 4. Histograms of the rise time of the magnetic field waveforms generated by intracloud lightning discharges

그림 5. 운방전에 의해 발생된 전장의 반전될 깊이 분포
Fig. 5. Histograms of the depth of the dip to opposite polarity in the magnetic field waveforms generated by intracloud lightning discharges

그림 6. 운방전에 의해 발생된 전장의 평균폭 분포
Fig. 6. Histograms of the full pulse width of the magnetic field waveforms generated by intracloud lightning discharges

그림 7. 운방전에 의해 발생된 전장의 영점교차시간 분포
Fig. 7. Histograms of the zero-to-crossing time of the magnetic field waveforms generated by intracloud lightning discharges

그림 8. 운방전에 의해 발생된 전장의 상승시간 분포
Fig. 8. Histograms of the rise time of the electric field waveforms generated by intracloud lightning discharges

그림 9. 운방전에 의해 발생된 전장의 반전될 깊이 분포
Fig. 9. Histograms of the depth of the dip to opposite polarity for the electric field waveforms generated by intracloud lightning discharges
부극성 운전전에 의해 발생된 전장 및 자장 파형의 파라미터를 비교분석해 보면 자장 파형의 경우 상승시간 5.4[μs], 필스폭 46.1[μs], 영점교차시간 21.5[μs], 반전림 길이 54.8[%]를 보였으며 전장 파형의 경우 상승시간 5.4[μs], 필스폭 45.6[μs], 영점교차시간 22[μs], 반전림 길이 55.7[%]의 결과를 보였다. 운전전에 의해 발생된 전장과 자장 파형의 파라미터를 분석해 본 결과 전장 파형의 파라미터가 자장 파형의 파라미터가 거의 같은 값을 갖는다. 이를 바탕으로 때 방사성분의 지역적으로 나타난다는 것을 알 수 있었다.

표 1에 운전전에 의해 발생된 전장과 자장 파형의 파라미터 비교를 보여주고 있다. 방사성분이 지역적이라도 전장의 파라미터와 자장의 파라미터를 비교했을 때 거의 차이가 없는 것을 볼 수 있었으나 정극성과 부극성의 파라미터를 비교했을 때 차이가 나는 것을 볼 수 있었다.

4. 결론

본 연구에서는 운전전에 의해 발생되는 전장 파형과 자장 파형을 측정할 수 있는 전장 및 자장 측정기를 구 성하여 실험설점을 통하여 운전전에 의해 발생되는 전장과 자장 파형을 측정하고 파형의 파라미터에 대해 통계적 분석을 한 결과 다음과 같은 결론을 얻었다.

(1) 자장 파형 뿐만 아니라 전장 파형을 측정함에 따라 운전전의 극성을 파악할 수 있게 되어 더 세밀한 통계적 분석을 가능케 되었다.

(2) 운전전에 의해 발생된 전장과 자장 파형이 측정되어 얻은 결과에 자장 파형의 파라미터에는 거의 차이가 없었으나 극성에 따른 결과는 전장과 자장 파형의 파라미터에 차이가 나는 것을 볼 수 있었다.

참고문헌


(4) 이호희, 조명철, 이두철, 심용보, “세방전에 의한 유도전압과 자장의 측정”, 대한전기학회 하계학술대회 논문집, pp.1865~1868, 2004

(5) 이호희, 이두철, 박영환, 조명철, “세방전에 의해 발생된 전장 및 자장의 특성”, 대한전기학회 하계학술대회 논문집, pp.2135~2137, 2005