Study on Fluorine Penetration of Capping Layers using FTIR analysis
Do-Won Lee, Nam-Hoon Kim, Sang-Yong Kim, Tae-Hyoung Kim and Eui-Goo Chang
Chung-Ang University, DongbuAnam Semiconductor, Yeojoo Institute of Technology

Abstract

To fill the gap of films for metal-to-metal space High density plasma fluorinated silicate glass (HDP FSG) is used due to various advantages. However, FSG films can have critical drawbacks such as bonding issue of top metal at package, metal contamination, metal peel-off, and so on. These problems are generally caused by fluorine penetration out of FSG film. Hence, FSG capping layers such like SRO (Silicon Rich Oxide) are required to prevent fluorine penetration. In this study, their characteristics and a capability to block fluorine penetration for various FSG capping layers are investigated through FTIR analysis. FTIR graphs of both SRO using ARC chamber and SiN show that clear Si-H bonds at 2175-2300cm\(^{-1}\). Thus, Si-H bond at 2175-2300 cm\(^{-1}\) of FSG capping layers lays a key role to block fluorine penetration as well as dangling bond.

Key Words : FSG, fluorine penetration, FTIR, SRO

1. 서론

금속과 금속 사이의 공간에서 gap fill 문제적으로 High Density Plasma Fluorinated Silicate Glass (HDP FSG)가 널리 사용되어지고 있다. 그들의 공정 자체의 특성에 의해 금속사이의 공간은 완벽하게 채울 수 있는 데다가, FSG의 폴루오르 도판트의 유전상수(3.7)가 Undoped silicate glass (USG)의 그것(4.3)에 비해 상대적으로 작기 때문에 그 공간의 캐페시턴스를 줄일 수 있다는 이점이 있다. [1, 2] 계속적으로 소자의 미세화와 적축도 성능의 상승에 사용하는 캐페시턴스의 감소는 매우 중요한 과제로 여겨졌다. 특히 소자의 성능이 기하급수적으로 발전함에 따라 소자의 작동 스피드는 무엇보다 중요한 요소가 아닐 수 없다. FSG의 폴루오르의 이러한 이점을 가지고 있음에도 불구하고, 여러 가지 문제점을 야기하는 것으로 알려져 있다. 특히 그들 문제점들은 FSG 필름 밖으로의 폴루오르 침투에 의한 것으로 알려져 있기에, 다양한 대비책이 연구되어 왔다. 특히 이 같은 문제점을 방지하기 위해 Silicon Rich Oxide (SRO)와 같은 다양한 FSG capping 레이어들이 현재 사용되고 있다.[3] 이러한 실험에서는 FSG capping 레이어들의 특성을 FTIR을 통해서 분석해 보고, 그 레이어들이 얼마나 폴루오르 침투를 효과적으로 막는지에 대해 연구해 보았다.

2. 실험

다양한 FSG capping layers의 생물을 제작하여, FTIR을 분석을 통해 각 레이어의 특성을 보여주는 특정 피크와 특정 지역을 측정해 보았다.
RF power를 바꾸어 가면서 타겟에 따라 3가지 종류의 PETEOS를 분류했다. PETEOS 필름은 투
열 RF 파워를 가진 Novellus사 제품에 의해서 중
착되었다. 이 실험에서 RF 파워의 총합은 1000W
로 설정했으며, Normal에서는 HF와 LF를 각각
500W씩 균등하게 맞추었고, High stress에서는
HF와 LF를 각각 700W, 300W으로, Low stress에
서는 300W, 700W으로 설정하였다. 중착한 후 모
든 필름들은 반사율이 1.45에 근사하게 나타났다.

HPD 챔버를 이용한 SRO 실험에서는 SiH₄/O₂
가스비율과 가스 유입량을 조절해가면서 반사율
(RI)이 1.5가 되게 맞추었다. 실험에 앞서 챔버의
플루오르가스 척커기를 확실하게 제거하기 위
해서 여러 장의 더미 웨이퍼를 중착했다. SRO를
중착할 때 HDP 챔버를 사용하여 두 순서(in-situ
와 out-situ)로 중착되었다. SRO에 대한 열처리 효
과를 알아보기 위해 out-situ한 타겟중 하나에는
열처리를 했다.

다른 캡핑레이어로 알려진 ARC 챔버를 이
용한 SRO와 SiN과 SiON도 실험에 행해졌다.
ARC 챔버를 이용한 SRO 실험에서도 반사율은 1.5
로 맞추기 위해서 가스 조건을 조절했다.

어닐링 공정의 열처리 실험에서는 PETEOS를
열처리하기 전·후의 웨이퍼를 비교해 보았다.
또한 열처리 횟수에 따른 성능 비교를 위해 1회와
4회로 구분하여 실험이 행해졌다. 1회의 열처리는
300℃에서 60분, 425℃에서 30분씩 이루어졌다.
SiN 열처리 실험에서는 열처리하기 전·후의 웨이
퍼를 비교해 보았다.

3. 결과 및 고찰

3.1 PETEOS의 종류

그림 1은 RF power의 비율 (HF/LF)에 따른
PETEOS의 종류에 대한 FTIR 프로파일이다.
FTIR 그래프에서 보듯이, Normal PETEOS와
High Stress PETEOS간의 차이점이 없었다.
Normal PETEOS는 FSG로부터 플루오르 침투를
소량 막아냈다. 이것은 필름 조성에서 사실상 차이
가 거의 없음을 의미한다. Low stress PETEOS의
경우, 3650cm⁻¹에서의 Si-OH 결합이 두드러지게 나
타났으며, 880cm⁻¹에서의 Si-O 결합이 약하게 나
타났다. Low LF 파워로 인해서 웨이어 표면에 소
수의 이온들만이 충돌하기 때문에 Si-OH 결합들
이 깨지지 않은 채 남아있는 것으로 판단된다.

그림 1. RF power에 따른 PETEOS의 FTIR 프로
파일 (a) Normal PETEOS (b) Low
PETEOS (c) High PETEOS.

그림 2. HDP 챔버를 이용한 SRO의 FTIR 프로파
일.

그림 3. ARC 챔버를 이용한 SRO의 FTIR 프로파
일.
3.2 HDP 챔버를 이용한 SRO

그림 2는 HDP 챔버를 이용한 SRO들의 FTIR 프로파일이다. HDP FSG 챔버를 이용한 SRO의 FTIR 그래프는 Normal PETEOS와 매우 흡사하게 나타났다. 단지 차이점은 HDP FSG 챔버를 이용한 SRO의 그래프에서는 880cm⁻¹에서의 Si-H 결합이 약하게 나타났다는 것이다. High Stress PETEOS와 비교했을 때, 비록 SiH₄/O₂ Ratio 비율은 RI 값에 맞추기 위해 조정했음에도 불구하고 여기에서는 어떠한 Si-OH 결합도 보이지 않았다. HDP 공정도의 PETEOS 공정에서의 LF power와 비슷한 효과를 보이는 bias power에 의한 하기 때문인 것으로 생각된다.

3.3 ARC chamber를 이용한 SRO

그림 3의 ARC 챔버를 이용한 SRO의 그래프에서 2175~2300cm⁻¹과 800cm⁻¹에서의 Si-H 결합들이 투명하게 나타났으며, 800~185cm⁻¹에서의 Si-O-Si 결합도 나타났다. 그림 4에서 보듯이 800~185cm⁻¹에서의 Si-O-Si 결합은 불안정한 bending type으로, 결합 방향에 따라 바뀌거나 전동해서 Si-H나 Si-OH와 같은 다른 결합으로 쉽게 깨질 수 있는 경향이 있다. Si-O-Si 결합의 또 다른 타입은 940~1035cm⁻¹에서의 Si-O-Si와 같은 Stretch type으로, 결합방향이 따라 대칭으로 전동하기 때문에 더 안정적이다. SiO₂가 열적 SiO₂처럼 stoichimetry에 가까기 때문에, 더 많은 Si-O-Si stretch 결합으로 구성되어 있다. 결국, SiH₄/O₂ 비율이 증가함수록, Si-O-Si bending 결합 대신에 높은 수소 함량으로 인해 Si-H 결합을 증가시킨다. 그래서 RI 값이 증가하게 되고, 폴루 오르 침투를 막게 된다. 일부 기존의 논문들에서는 많은 실리콘 dangling 결합들이 SRO안에 존재하여 FSG 플립으로 오는 응으로 전하된 폴루오르 원자들은 잡는다는 이론이 논의되어진 바 있다. 그러나, 이번 심해 결과에 따르면 2175~2300cm⁻¹의 Si-H 결합이 dangling 결합과 더불어서 폴루오르 침투를 막는 역할을 하고 있음을 유추하게 한다. 전에 시행한 SIMS 분석의 결과는 Arc 챔버를 이용한 SRO와 SiN 플립이 폴루오르 침투를 잘 막음을 보여준 바 있는데, FTIR 결과에 따르면 두 플립 모두 2175~2300cm⁻¹ Si-H 결합을 가지고 있다는 공동점을 지니었다. 이것은 두 Si-H 결합중 2175~2300cm⁻¹ Si-H 결합이 폴루오르 침투를 막는 데 결정적인 역할을 하고 있음을 의미한다. SiO₂입 에도 불구하고 3350cm⁻¹의 N-H 결합이 나타나는 데, 이는 SiH₄와 N₂소스 물질로 쓰었기 때문이다.
3.4 SiN

그림 5는 SiN의 FTIR 프로파일이다. 증착된 SiN이 거의 항상 수소를 포함하고 있으며, 그 양은 일반적으로 다른 화합물을 보다는 훨씬 많다. 수소의 소스는 선구물질인 SiH₄와 NH₃ 산화물이지만, 필름내의 수소가 존재하는 것은 질소 화학구조의 결과이다. 공기중의 원자들은 결점 임이 되지 않지만, 결화 실리콘과 같은 부사언스로운 필름은 각각의 실리콘과 질소 원자의 결합가가 하락되는 위치에 모두 채워지기 때문에, 그래서 상당수의 제거된 결합들이 나타나게 된다. 그들 결합들은 수소원자들에 의해 쉽게 발생하기 때문이다. 그래서 기존의 플라즈마 결화막 중사시는 Si와 N 원소를 모두에 결합할 20%이상의 수소를 지니었으며, 열에 의한 결화막 중사(thermal nitrides)에서도 고온 열처리 후에서조차 많은 수소들이 남아있었다. 그래서 SiN의 FTIR 그래프는 쉽게 이해될 수 있다. 또한 결화막의 화학량은 특히 플라즈마 중시해 낮게 형성되기 때문에, RI 값은 1.8부터 2.2까지 변하며 결화막 중사에 있어서 또한 유용한 조정 수치다. Arc 챔버를 이용한 SRO 필름에서 예기하였듯이, SiN 필름내의 2175~2300 cm⁻¹의 Si-H 결합은 SRO와 마찬가지로 플루오르 첨두를 막는데 결정적 역할을 한다.

3.5 SiON

그림 5에서 보듯이, SiON의 특성은 Normal PETEOS와 SiN의 중간점도였다. SiON의 FTIR 그래프에서 800~1100 cm⁻¹의 Si-O-N-H 결합이 나타났다. 그러나 2175~2300 cm⁻¹의 Si-H 결합은 보이지 않았다. 이것은 SiON이 Arc 챔버를 이용한 SRO와 SiN과 비교해서 플루오르 첨두를 잘 막지 못함을 보여준다. 플라즈마 SION 필름은 일정한 조합을 지니지 않아서, 가스 조성비에 따라 SiO₂에서 SiN까지 여러 가지로 나타난다. 필름 조성은 일반적으로 SiO₂에서의 1.4로부터 SiN에서의 2.1까지 변하는 RI값을 측정하여 특정지어 진다.

4. 결론

FTIR 스펙트럼을 이용하여 각 필름의 특성을 보여주는 특정 피크와 특정 지역을 측정해 보았다. 전에 시행한 SIMS 분석의 결과는 Arc 챔버를 이용한 SRO와 SiN 필름이 플루오르 첨두를 잘 막아 내었다. 다른 필름들에 비해 Arc 챔버를 이용한 SRO와 SiN은 2175~2300 cm⁻¹의 Si-H 결합이 보여준 큰 차이점으로 들 수가 있다. 이는 무엇보

감사의 글

본 연구는 한국과학사회 논문기초연구 (RO1-2002-000-00375-0) 지원으로 수행되었음.

참고 문헌