• 제목/요약/키워드: zwitterion

검색결과 26건 처리시간 0.029초

철근 콘크리트의 Zwitterion 및 인산염 기반 하이브리드 부식 억제제: 염화물 임계값 및 사용 수명 결정 (Hybrid Corrosion Inhibitor-Based Zwitterions and Phosphate in Reinforced Concrete: Determining Chloride Threshold and Service Life)

  • 트란 득 탄;정민구;이한승;양현민;싱 지텐드라 쿠마
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.33-34
    • /
    • 2023
  • Corrosion of reinforcement steel is a major cause of deterioration in reinforced concrete (RC) structures. In order to protect these structures from corrosion, corrosion inhibitors are added to the concrete mix. In recent years, zwitterionic compounds have shown promising results as corrosion inhibitors in concrete due to their ability to form a protective layer on the surface of the reinforcement steel. The experimental study involves preparing concrete samples with different concentrations of adding the hybrid corrosion inhibitor at a high concentration of chloride ions. This study aims to determine the chloride threshold value and service life of hybrid corrosion inhibitors in reinforced concrete based on zwitterions. The samples are subjected to accelerated corrosion tests in a chloride environment to determine the threshold value and service life of the corrosion inhibitor. The effect of hybrid inhibitor on mechanical properties is guaranteed in allowable range. The chloride threshold concentration and service life of hybrid inhibitor containing samples perform greater than those of plain RC.

  • PDF

Mechanism and Regulation of Amino Acid Transport in Mammary Gland - Review -

  • Kansal, Vinod K.;Sharma, Rekha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권5호
    • /
    • pp.710-719
    • /
    • 2001
  • Several amino acid transport systems in mammary gland have been characterized during the last few years. These systems may be divided into two broad categories based on whether they are sodium-dependent or $Na^{+}$-independent, and each of these categories is subdivided into 3 groups depending on whether the systems prefer zwitterionic, cationic or anionic substrates. The zwitterion preferring transport processes in mammary gland are $Na^{+}$-dependent system A and $Na^{+}$-independent systems L and T. System $y^{+}$ is a $Na^{+}$-independent transporter of cationic amino acids and $X_{AG^{-}}$ is a $Na^{+}$-dependent system for anionic amino acids. A ($Na^{+}+Cl^{-}$)-dependent system, selective for $\beta$-amino acids has been reported in rat mammary tissue. In addition, there is yet another class of transporters that have still broader specificity. The $Na^{+}$-dependent systems $BCl^{-}$-dependent and $BCl^{-}$-independent and $Na^{+}$-independent system $y^{+}L$ have been reported to mediate the transport of zwitterionic as well as cationic amino acids. Each system has been characterized with respect to its substrate specificity, affinity, kinetics and ion-dependence. Transport of amino acids by mammary tissue is regulated by i) the intracellular substrate concentration, ii) lactogenic hormones and iii) milk stasis. Four of the above transport systems (i.e. A, L, $y^{+}$ and $BCl^{-}$-independent) are up-regulated by lactogenic hormones (insulin, cortisol and prolactin) in mammary gland.

전류를 이용한 Levodopa의 경피전달: 낮은 pH에서의 투과 (Electrotransport of Levodopa through Skin: Permeation at Low pH)

  • 조정은;오승열
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권1호
    • /
    • pp.23-31
    • /
    • 2010
  • In our previous work on levodopa delivery at pH 2.5 using iontophoresis, we found that cathodal delivery showed higher permeation than anodal delivery and electroosmosis plays more dominant role than electrorepulsion. In this work, we studied the transdermal transport of levodopa at very low pH (pH=1.0) where all levodopa molecules are cations, and evaluated some factors which affect the transdermal transport. The transport study at pH 2.5 was also conducted for comparison. The contribution of electrorepulsion and electroosmosis on flux was also evaluated. Using stable aqueous solution, the effect of electrode polarity, current density, current type and drug concentration on transport through skin were studied and the results were compared. We also investigated the iontophoretic flux from hydroxypropyl cellulose (HPC) hydrogel containing levodopa. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell. Full thickness hairless mouse skin were used. Current densities applied were 0.2, 0.4 or $0.6\;mA/cm^2$. Contrary to the pH 2.5 result, anodal delivery showed higher flux, indicating that electrorepulsion is the dominant force for the transport, overcoming the electroosmotic flow which is acting against the direction of electrorepulsion. Cumulative amount of levodopa transported was increased as the current density or drug concentration was increased. When amount of current dose was constant, continuous current was more beneficial than pulsed current in promoting levodopa permeation. Similar transport results were obtained when hydrogel was used as the donor phase. These results indicate that iontophoretic delivery of zwitterion such as levodopa is much complicated than that can be expected from small ionic molecules. The results also indicate that, only at very low pH like pH 1.0, electrorepulsion can be the dominant force over the electroosmosis in the levodopa transport.

소의 혈청 Ornithine Carbamyltransferase 활성도 측정에 필요한 적합한 조건에 관한 연구 (A Study on Optimal Conditions for Serum Ornithine Carbamyltransferabe Determination in Cattle)

  • 이창우
    • 한국임상수의학회지
    • /
    • 제2권1호
    • /
    • pp.105-114
    • /
    • 1985
  • The optimal conditions for the evaluation of serum ornithine carbamyltransferase activity, based on the do-termination of citrulline formed during the enzymatic reaction, were investigated and the serum ornithine carbamyltransferase activity of cattle were surveyed. Barbital-acetate buffer(70m moles/L, pH 7.0 at $37^{\circ}C$) were usea for the entire experiment. The results were as follows. 1. When the concentration of $H_2SO_4$ in color reagent exceeds 3.0 m1/100m1 the serum protein precipitated and absorbance increased. 2. The concentrations of antipyrine and diacetylmonoxime required for maximal color formation were 1g/L and 5g/L, respectively. 3. The absorbance was maximal when the reaction mixture was boiled for 25 minutes. 4. The chromogen were stable for at least 60 minutes under loon lighting condition, but decolorized rapidly under direct sunlight. 5. The minimal concentration of urease solution(Sigma Chemical Co., Type III) required for elimination of serum urea was 0, 6mg/ml. 6. When the concentration of L-ornithine solution increased up to 22m moles/L, the ornithine carbamyltransferase activity was not inhibited by zwitterion of ornithine. 7. In accordance with the increase of carbamylphosphate concentration the ornithine carbamyltransferase activity increased and the nonenzymatic citrulline production also increased slightly. 8. The standard curve of citrulline revealed linear pattern within the range of this experiment (0.1~4.0m moles/L). 9. The ornithine carbamyltransferase activities of normal cattle investigated in this laboratory were 6.85$\pm$4.38U/L (mean$\pm$SD) in cows and 2.89$\pm$2.50U/L in bulls. The range of the activities were 0.39~29.12U/L in cows and 0.06~17.34U/L in bulls.

  • PDF

전해질 수용액에서 L-Alanine의 활동도계수와 용해도의 측정 및 모델링 (Measurements and Modeling of the Activity Coefficients and Solubilities of L-alanine in Aqueous Electrolyte Solutions)

  • 이봉섭;김기창
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.519-533
    • /
    • 2010
  • 본 연구에서는 L-형 아미노산인 L-Alanine과 무기염인 NaCl, KCl, $NaNO_3$$KNO_3$의 각 전해질로 이루어진 L-Alanine/전해질 수용액 계에서 L-Alanine의 활동도계수와 용해도를 298.15 K에서 측정하였다. L-Alanine의 활동도계수는 양이온 및 음이온의 선택성 전극으로 이루어진 화학전지에서 두 전극간의 기전력을 측정하는 전기화학 법으로 측정하였으며, 용해도는 L-Alanine의 고체상과 상평형을 이루고 있는 포화용액을 중량 분석하여 측정하였다. 한편 본 연구에서는 아미노산(L-Alanine)/전해질 수용액 계의 잔류(residual) Helmholtz 자유에너지를 섭동사슬-통계역학적 회합성유체이론(perturbed chain-statistical associating fluid theory)과 단순-평균구근사(primitive-mean spherical approximation)이론을 결합한 관계로 모델링 하였으며, 이로부터 아미노산의 활동도계수 및 용해도에 대한 열역학적 관계식을 얻었다. Helmholtz 자유에너지를 모델링 하는 과정에서는 아미노산은 양쪽성 이온(zwitterion) 형태로 존재하며 아미노산의 양쪽성 이온은 같은 이온끼리 자기-회합(self-association)하며 동시에 물분자와 교차-회합(cross-association)하는 회합체로 가정하였으며, 또한 아미노산의 양쪽성 이온이 전해질(무기염)로부터 해리된 양이온 및 음이온과 상호작용하여 이온복합체(ion complex)를 형성하는 과정을 회합현상으로 가정하였다. 본 연구에서 제안된 이론적 모델로부터 L-Alanine/전해질 수용액 계에서 계산되는 L-Alanine의 활동도계수 및 용해도 값은 본 연구의 실험값과 일치하는 경향을 보였다.

이온토포레시스를 이용한 levodopa의 경피전달: electroosmosis 및 electrorepulsion의 역할 (Levodopa Transport through Skin using Iontophoresis: the Role of Electroosmosis and Electrorepulsion)

  • 정신애;곽혜선;전인구;오승열
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권1호
    • /
    • pp.31-38
    • /
    • 2008
  • The objective of this work is to study transdermal delivery of levodopa using iontophoresis and evaluate various factors which affect the transdermal transport. Levodopa is unstable in aqueous solution, and, in order to establish a stable condition for levodopa for the duration of experiment, we investigated the stability of levodopa in aqueous solutions of different pHs with/without the addition of dextrose or the application of current. Using stable aqueous solution, we have studied the effect of pH, polarity and penetration enhancer (ethanol) on transdermal flux and compared the results. We also investigated the iontophoretic flux from hydroxypropyl cellulose (HPC) hydrogel. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell. Full thickness hairless mouse skin and rat skin were used for this work. Current densities applied were 0.4 or $0.6mA/cm^2$ and current was off after 6 hour application. Stability study showed that levodopa solution with a pH 2.5 or 4.5 maintained the initial concentration of levodopa for 24 hours with the addition of 5% dextrose. However, at pH 9.5, levodopa was unstable and 30 to 40% of levodopa degraded within 24 hours, even with the addition of 5% dextrose. Hydrogel swollen with dextrose added levodopa solution maintained about 97% of the initial concentration of levodopa for 13 days, when stored in $4^{\circ}C$. The application of current did not affect the stability of levodopa in hydrogel. Flux study from levodopa solution with pH 2.5 showed that cathodal delivery of levodopa was higher than passive or anodal delivery. When the pH of the donor solution was 4.5, anodal delivery of levodopa was higher than passive or cathodal delivery. These results seem to indicate that electroosmosis plays more dominant role than electrorepulsion in the flux of levodopa at pH 2.5, and the reverse situation applies for pH 4.5. The passive flux was unexpectedly high for the ionized levodopa. Similar to the results from aqueous solution, cumulative amount of levodopa transported trom HPC hydrogel by cathodal delivery was significantly higher than passive or anodal delivery. The treatment of 70% ethanol cotton ball by scrubbing increased passive, anodal and cathodal flux, with the largest increase for anodal flux. These results indicate that iontophoretic delivery of zwitterion such as levodopa is much complicated than that can be expected from small ionic molecules with single charge. The results also indicate that the balance between electroosmosis and electrorepulsion plays a very important role in the transport through skin.